NuSMV 2.5 User Manual

Roberto Cavada, Alessandro Cimatti,
Charles Arthur Jochim, Gavin Keighren,

Emanuele Olivetti, Marco Pistore, Marco Roveri
and Andrei Tchaltsev

FBK-irst - Via Sommarive 18, 38055 Povo (Trento) — Italy

Email: nusmv@fbk.eu

This document is part of the distribution package of theSWMV model checker,
available ahttp://nusmv.fbk.eu

Parts of this documents have been taken from “The SMV Syst@&raft”, by K.
McMillan, available at sdfdsf:http://www.cs.cmu.edu/\ ~modelcheck/
smv/smvmanual.r2.2.ps

Copyright(©1998-2005 by CMU and ITC-irst.
Copyright(©2010 by FBK-irst.

Contents

1

2

Introduction 4

Input Language 6

2.1 TypesOVerview i i 7
211 Boolean. 7
2.1.2 Integer 7
2.1.3 EnumerationTypes 7
214 Word 8
215 Array ..o 8
216 SetTypes 8
217 TypeOrder e 9

2.2 EXPressionso 9
2.2.1 Implicit Type Conversion. 10
2.2.2 ConstantExpressions 10
2.2.3 BasiCExpressions 12
2.2.4 Simple and Next Expressions 21
2.2.5 Typeconversionoperators 21

2.3 Definitionofthe FSMo 22
2.3.1 \Variable Declarations 22
2.3.2 DEFINEDeclarations 26
2.3.3 Array Define Declarations 26
2.3.4 CONSTANT®eclarations 27
235 INIT Constraint 27
2.3.6 INVARConstraint 28
2.3.7 TRANSConstraint 28
2.3.8 ASSIGNConstraint 28
2.3.9 FAIRNESSConstraints 30
2.3.10 MODULBeclarations 30
2.3.11 MODULHnstantiations 31
2.3.12 References to Module Components (Variables and &gfin. 32
2.3.13 ProCesses o it 33
2.3.14 A Program and thmain Module 34
2.3.15 Namespaces and Constraints on Declarations 34
2.3.16 Context 35
2.3.17 ISA Declarations 36

2.4 Specifications 36
2.4.1 CTL Specifications 36
2.4.2 Invariant Specifications L 37

2.4.3 LTL Specifications 38

2.4.4 Real Time CTL Specifications and Computations 39
2.45 PSL Specifications o oL 40
2.5 VariableOrderlnput 44
251 InputFileSyntax 45
252 ScalarVariables. 45
253 ArrayVariables oo 46
2.6 ClustersOrdering i 46
Running NuSMV interactively 48
3.1 ModelReadingand Building 49
3.2 Commands for Checking Specifications 58
3.3 Commands for Model Simplification 86
3.4 CommandsforHRC 71
3.5 Commands for Guided Reachability 2 7
3.6 Commands for Bounded Model Checking 73
3.7 Commands for checking PSL specifications 88
3.8 SimulationCommands 89
3.9 ExecutionCommands. 91
310 Traces o e 93
3.10.1 InspectingTraces i 93
3.10.2 DisplayingTraces 94
3.10.3 Trace PluginCommands 95
3.11 TracePlugins e 97
3.11.1 Basic Trace Explainer 97
3.11.2 States/VariablesTable 98
3.11.3 XML FormatPrinter, 98
3.11.4 XML FormatReader 99
3.12 Interfacetothe DD Package 99
3.13 Administration Commands 310
3.14 Other EnvironmentVariables 110
Running NuSMV batch 113
Compatibility with CMU SMV 120
Typing Rules 123
B.1 Types 123
B.2 ImplicitConversion 123
B.3 TypeRules 124
Production Rules 128

Chapter 1

Introduction

NUSMYV is a symbolic model checker originated from the reengjiiimgy, reimplemen-
tation and extension of CMU SMV, the original BDD-based matecker developed
at CMU [McM93]. The NUSMYV project aims at the development of a state-of-the-art
symbolic model checker, designed to be applicable in teldgydransfer projects: it
is a well structured, open, flexible and documented platffmmmodel checking, and
is robust and close to industrial systems standards [CCGER0O0

Version 1 of NUSMV basically implements BDD-based symbolic model check-
ing. Version 2 of USMV (NUSMV2 in the following) inherits all the functionalities
of the previous version, and extends them in several diestiCCG"02]. The main
novelty in NUSMV2 is the integration of model checking techniques basegroposi-
tional satisfiability (SAT) [BCCZ99]. SAT-based model ckét is currently enjoying
a substantial success in several industrial fields, andsopemew research directions.
BDD-based and SAT-based model checking are often able Ye siifferent classes of
problems, and can therefore be seen as complementarydeeisni

Starting from NUSMV2, we are also adopting a new development and license
model. NUSMV?2 is distributed with an OpenSource licehsthat allows anyone
interested to freely use the tool and to participate in itgettgpment. The aim of
the NUSMV OpenSource project is to provide to the model checkingroanity a
common platform for the research, the implementation, &edcomparison of new
symbolic model checking techniques. Since the releaseuMV2, the NUSMV
team has received code contributions for different partk@tystem. Several research
institutes and commercial companies have expressed shi@reollaborating to the
development of NSMV. The main features of iSMV are the following:

e Functionalities. NUSMV allows for the representation of synchronous and
asynchronous finite state systémand for the analysis of specifications ex-
pressed in Computation Tree Logic (CTL) and Linear Tempbaagic (LTL),
using BDD-based and SAT-based model checking techniquesiristics are
available for achieving efficiency and partially controdji the state explosion.
The interaction with the user can be carried on with a textualface, as well
as in batch mode.

1(seehttp://www.opensource.org)
2However, asynchronous processes are deprecated in v&rsifnand later, and may be no longer sup-
ported in future versions.

e Architecture. A software architecture has been defined. The different camp
nents and functionalities of lISMV have been isolated and separated in mod-
ules. Interfaces between modules have been provided. &dises the effort
needed to modify and extendd$MV.

e Quality of the implementation. NUSMYV is written in ANSI C, is POSIX com-
pliant, and has been debugged with Purify in order to detechory leaks. Fur-
thermore, the system code is thoroughly commentedSMV uses the state
of the art BDD package developed at Colorado University, @modides a gen-
eral interface for linking with state-of the-art SAT solsei his makes NSMV
very robust, portable, efficient, and easy to understancelopie other than the
developers.

This document is structured as follows.

e In Chapter 2 [Input Language], page 6 we define the syntaxeahtbut language
of NUSMV.

e In Chapter 3 [Running NuSMV interactively], page 48 the coamais of the
interaction shell are described.

e In Chapter 4 [Running NuSMV batch], page 113 we define thehbatode of
NUSMV.

NUSMYV is available ahttp://nusmv.fbk.eu

Chapter 2

Input Language

In this chapter we present the syntax and semantics of ths iapguage of NSMV.

Before going into the details of the language, let us givenageneral notes about
the syntax. In the syntax notations used below, syntactiegoaies (non-terminals)
are indicated bynonospace font , and tokens and character set members (terminals)
by bold font. Grammar productions enclosed in square brackgts)(are optional
while a vertical bar (") is used to separate alternatives in the syntax rules. 8oras
one of is used at the beginning of a rule as a shorthand for choosiung several
alternatives. If the charactdrs[and] are in bold font, they lose their special meaning
and become regular tokens.

In the following, anidentifier may be any sequence of characters starting with
a character in the sé¢ia- Za- z_} and followed by a possibly empty sequence of char-
acters belonging to the séd- Za- z0- 9_$#- }. All characters and case in an identifier
are significant. Whitespace characters are spa8®ACE3, tab KTAB>) and new-
line (<kRET>). Any string starting with two dashes{* ") and ending with a newline is
a comment and ignored by the parser.

The syntax rule for aitentifier is:
identifier ::

identifier_first_character
| identifier identifier_consecutive_character

identifier_first_character :: one of
ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghij kl mnopgrstuvwxyz_

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # -
digit :: oneof 01234567829
An identifier is always distinct from the NSMV language reserved keywords
which are:

MODULE, DEFI NE, MDEFI NE, CONSTANTS, VAR, | VAR, FROZENVAR,
I'NI' T, TRANS, | NVAR, SPEC, CTLSPEC, LTLSPEC, PSLSPEC, COVPUTE,

NAME, | NVARSPEC, FAI RNESS, JUSTI CE, COVPASSI ON, | SA, ASSI GN,
CONSTRAI NT, SI MPWFF, CTLWFF, LTLWFF, PSLWFF, COMPWFF, | N, M N,
MAX, M RROR, PRED, PREDI CATES, process, array, of, bool ean,
integer, real, word, wordl, bool, signed, unsi gned, extend,
resi ze, si zeof , uwconst , swconst , EX, AX, EF, AF, EG AG E, F, O, G
H XY ZAUS,YV,T,BU, EBF, ABF, EBG, ABG, case, esac, nod, next,
init,union,in,xor,xnor,self, TRUE, FALSE, count

To represent various values we will usgeger numbers which are any non-
empty sequence of decimal digits preceded by an optionaj/umizus

integer_number ::
- digit
| digit
| integer_number digit

andsymbolic constants which areidentifiers
symbolic_constant :: identifier

Examples ofinteger numbers and symbolic constants are 3, -14,
007, OK, FAIL, waiting, stop . The values oéymbolic constants and
integer numbers do not intersect.

2.1 Types Overview

This section provides an overview of the types that are neiseg by NUSMV.

2.1.1 Boolean
Theboolean type comprises symbolic valu€8L SE and TRUE.

2.1.2 Integer

The domain of thenteger type is simply any whole number, positive or negative. At ithe-
ment, there are implementation-dependent constraintsaathis type anthteger numbers

can only be in the range 2% + 1 to 232 — 1 (more accurately, these values are equivalent to the
C/C++ macrodNT _MIN +1 andINT _MAX.

2.1.3 Enumeration Types

An enumeration type is a type specified by full enumerations of all the vathes the type com-
prises. For example, the enumeration of values majsbepped, running, waiting,

finished },{2, 4, -2, 0 } {FAIL, 1, 3, 7, OK 1}, etc. All elements of an enumer-
ation have to be unique although the order of elements ismmbitant.

However, in the NNSMV type system, expressions cannot be of actnalmeration types,
but of their simplified and generalised versions only. Suehegalisecenumeration types do
not contain information about the exact values constigtire types, but only the flag whether all
values ara@nteger numbers , symbolic constants or both. Below only generalised
versions ofenumeration types are explained.

Thesymbolic enum type covers enumerations containing osjymbolic constants
For example, the enumeratiofistopped, running, waiting } and{FAIL, OK } be-
long to thesymbolic enum type.

There is also antegers-and-symbolic enum type. This type comprises enumerations
which containbothinteger numbers and symbolic constants , for example {-1,
1, waiting }, {0, 1, OK }, {running, stopped, waiting, O 1.

Anotherenumeration type isinteger enum. Example of enumerations of integers &
4, -2, 0 }and{-1, 1 }. Inthe NUSMV type system an expression of the tyipéeger
enum is always converted to the tyjreteger. Explaining the type of expression we will always
use the typénteger instead ofinteger enum.

Enumerations cannot contain any boolean value{G&LSE, TRUE}). boolean type
must be declared as boolean.

To summarise, we actually deal only with tvemumeration types: symbolic enum and
integers-and-symbolic enum. These types are distinguishable and have different dpasat
allowed on them.

2.1.4 Word

The unsigned word[e] andsigned word[e] types are used to model vector of bits (booleans)
which allow bitwise logical and arithmetic operations (igned and signed, respectively). These
types are distinguishable by their width. For example, typsigned word[3] represents vector
of three bits, which allows unsigned operations, and sigeed word[7] represents vector of
seven bits, which allows signed operations.

When values ofinsigned word[N] are interpreted as integer numbers the bit representation
used is the most popular one, i.e. each bit represents assiMEgower of 2 betweed (bit
number 0) an@™ ! (bit numberN — 1). Thusunsigned word[N] is able to represent values
from 0 to2" — 1.

The bit representation agigned word[N] type is “two’s complement”, i.e. it is the same as
for unsigned word[N] except that the highest bit (numbat — 1) has value-2"~1. Thus the
possible value fosigned word[N] are from—2" "1 to 2V~ — 1.

2.1.5 Array

Arrays are declared with a lower and upper bound for the inded the type of the elements in
the array. For example,

array 0..3 of boolean
array 10..20 of {OK, vy, z }
array 1..8 of array -1..2 of unsigned word[5]

The typearray 1..8 of array -1..2 of unsigned word[5] means an array of 8
elements (from 1 to 8), each of which is an array of 4 elemdrasn(-1 to 2) that are 5-bit-long
unsigned words.

Array subtype is the immediate subtype of an array type. Kkample, subtype oérray
1..8 of array -1..2 of unsigned word[5] isarray -1..2 of unsigned word[5]
which has its own subtypensigned word[5].

array types are incompatible witbet type, i.e. array elements cannot besef type.

Expression of array type can be constructed with abialfl NE (see 2.3.3) or variables of
array type (see 2.3.1).

2.1.6 SetTypes

set types are used to identify expressions representing a sefwds. There are fowget types:
boolean set, integer set, symbolic set, integers-and-symbolic set. The set types can be
used in a very limited number of ways. In particular, a vdeatannot be of aet type. Only
range constant anduni on operator can be used to create an expressiorsef gype, and

onlyin, case, (e ? o: @) and assignmehiexpressions can have imediate operands s#ta

type.
Everyset type has a counterpart among other types. In particular,

the counterpart of boolean set type isboolean,

the counterpart of anteger set type isinteger,

the counterpart of aymbolic set type issymbolic enum,

the counterpart of mtegers-and-symbolic set type isintegers-and-symbolic enum.
Some types such asmsigned word[e] andsigned word[e] do not have &et type counterpart.

2.1.7 Type Order
Figure 2.1 depicts the order existing between typesursN V.

unsigned word[1]
integer symbolic enum

boolean l 1
integers-and-symbolic enum unsigned word[3]

unsigned word[2]

signed word[1]

integer set symbolic set signed word[2]

boolean set l]
integers-and-symbolic set signed word[3]
array N1..M1 of subtypel N1=N2 subtypel
: ifandonlyif ~ “M1=M2and |
array N2..M2 of subtype2 y subtype2

Figure 2.1: The ordering on the types ivtEMV

It means, for example, thatteger is less tharntegers-and-symbolic enum, symbolic enum
is less tharintegers-and-symbolic enum, etc. Theunsigned word[e] and signed word[e]
any other type or between each other. Any type is equal th.itse

Note that enumerations containing omyeger numbers have the typénteger.

For 2 arrays typesarray N1..M1 of subtypel and array N2..M2 of
subtype2 the first type is less then the second one if and onMiEN2 M1=M2and type
subtypel is less tharsubtype2 .

2.2 Expressions

The previous versions of NuSMV (prior to 2.4.0) did not have type system and as such ex-
pressions were untyped. In the current version all exppassare typed and there are constraints
on the type of operands. Therefore, an expression may ncengiaily violate the type system,
i.e. be erroneous.

1For more information on these operators see pages 12, 189&hd 28, respectively.

To maintain backward compatibility, there is a new systemrialde called
backward _compatibility (and a correpondingold command line option) that
disables a few new features of version 2.4 to keep backwartpatbility with old version of
NuSMV. In particular, if this system variable is set then typalations caused by expressions
of old types (i.e.enumeration type, boolean andinteger) will be ignored by the type checker,
instead, warnings will be printed out. See description gef&0 for further information.

If additionally, the system variablgype _checking _warning _on is unset, then even
these warnings will not be printed out.

2.2.1 Implicit Type Conversion

In some expressions operands may be converted from onedyfseset type counterpart (see
2.1.6). For examplénteger can be converted timteger set type.

Note: Prior to version 2.5.1, implicit type conversion framteger to boolean (and vicev-
ersa) was performed. Since version 2.5.1, implitieger j-¢ boolean type conversion is no
longer supported, and explicit cast operators have to be use

2.2.2 Constant Expressions

A constant can be a boolean, integer, symbolic, word or range constant.

constant ::
boolean_constant
integer_constant
symbolic_constant
word_constant
range_constant

Boolean Constant

A boolean constant is one of the symbolic valueBALSE and TRUE. The type of a
boolean constant is boolean.

boolean_constant :: one of
FALSE TRUE

Integer Constant

An integer constant is aninteger number . The type of arinteger constant
isinteger.

integer_constant :: integer_number

Symbolic Constant

A symbolic constant is syntactically andentifier and indicates a unique value.
symbolic_constant :: identifier

The type of asymbolic constant is symbolic enum. See Section 2.3.15 [Namespaces],

page 34 for more information about h@ymbolic constants are distinguished from other
identifiers ,i.e. variables, defines, etc.

10

Word Constant

Word constant begins with digitO, followed by optional characten (unsigned) ors
(signed) and one of the characté (binary), o/O (octal), d/D (decimal) orh/H (hexadeci-
mal) which gives the base that the actual constant is in. blaxtes an optional decimal integer
giving the number of bits, then the characteand lastly the constant value itself. AssumMg
is the width of the constant the type ofvrd constant is signed word[N] if characters is
provided, andinsigned word[N] otherwise. For example:

0Osb5 10111 has typesigned word[5]
Ouo6 _37 has typeunsigned word[6]
0d11.9 has typeunsigned word[11]
Osh12 a9 has typesigned word[12]

The number of bits can be skipped, in which case the width tienaatically calculated from
the number of digits in the constant and its base. It may besseey to explicitly give leading
zeroes to make the type correct — the following are all edeitadeclarations of the integer
constantl1 as a word of typeinsigned word[8]:

Oud8 _11
Oub8_1011
0b_00001011
Oh_Ob

0h8_b

The syntactic rule of thevord constant s the following:

word_constant ::

0 [word_sign_specifier] word_base [word_width] _ word_value
word_sign_specifier :: one of

us
word_width ::

integer_number -- a number greater than zero
word_base ::

b| B|] o] Ol d| D| h|] H

word_value ::
hex_digit
| word_value hex_digit
| word_value _
hex_digit :: one of

0123456789abcdef ABCDEF

Note that

e The width of a word must be a number strictly greater than 0.

e Decimalword constants mustbe declared with the width specifier, since the number
of bits needed for an expression li@d 019 is unclear.

e Digits are restricted depending on the base the constaiven on.

e Digits can be separated by the underscore charact®rt@ aid clarity, for example
0b_0101_1111 1100 which is equivalent t®b 010111111100 .

11

e For a given widthN the value of a constant has to be in rafge. 2 — 1. For decimal
signed words (botls andd are provided) the value of a constant has to be in range
0...28°1

e The number of bits irword constant has an implementation limit which for most
systems is 64 bits.

Range Constant

A range constant specifies a set of consecutive integer numbers. For exarapten-
stant-1..5 indicates the set of numbersl, 0, 1, 2, 3, 4 and5. Other examples of
range constant canbel..10 , -10..-10 , 1..300 . The syntactic rule of theange
constant s the following:

range_constant ::
integer_number .. integer_number

with an additional constraint that the first integer numbeshie less than or equal to the second
integer number. The type ofrange constant isinteger set.

2.2.3 Basic Expressions

A basic expression is the most common kind of expression imsid/SMV.

basic_expr ::
constant -- a constant
| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| (basic_expr)
| ! basic_expr -- logical or bitwise NOT
| basic_expr & basic_expr -- logical or bitwise AND
| basic_expr | basic_expr -- logical or bitwise OR
| basic_expr xor basic_expr -- logical or bitwise exclusive OR
| basic_expr xnor basic_expr -- logical or bitwise NOT exclusive OR
| basic_expr - > basic_expr -- logical or bitwise implication
| basic_expr <-> basic_expr -- logical or bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr I = basic_expr -- inequality
| basic_expr < basic_expr -- less than
| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| - basic_expr -- integer unary minus
| basic_expr + basic_expr -- integer addition
| basic_expr - basic_expr -- integer subtraction
| basic_expr * basic_expr -- integer multiplication
| basic_expr | basic_expr -- integer division
| basic_expr nod basic_expr -- integer remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr -- bit shift left
| basic_expr [index] -- index subscript
| basic_expr [basic_expr : basic_expr]
-- word bits selection
| basic_expr 11 basic_expr -- word concatenation
| wordl (basic_expr) -- boolean to unsigned word[1] conversion
| bool (basic_expr) -- unsigned word[1] and int to boolean conversion

12

| toint (basic_expr) -- word and boolean to integer constant conversion

| count (basic_expr_list) -- count of true boolean expressions
| swconst (basic_expr , basic_expr)

-- integer to signed word constant conversion
| uwconst (basic_expr, basic_expr)

-- integer to unsigned word constant conversion
| signed (basic_expr) -- unsigned word to signed word conversion
| unsigned (basic_expr) -- signed word to unsigned word conversion
| sizeof (basic_expr) -- word size as an integer
| extend (basic_expr , basic_expr)

-- word width extension
| resize (basic_expr , basic_expr)

-- word width resize
| basic_expr uni on basic_expr -- union of set expressions
| { set_body_expr } -- set expression
| basic_expr i n basic_expr -- inclusion in a set expression
| basic_expr ? basic_expr : basic_expr

-- if-then-else expression
| case_expr -- case expression
| basic_next_expr -- next expression

basic_expr_list ::
basic_expr
| basic_expr_list , basic_expr
The order of parsing precedence for operators from highvtago

[I B

- (unary minus)
* / nod

Operators of equal precedence associate to the left, excefftat associates to the right. The
constants and their types are explained in Section 2.2.89@at Expressions], page 10.

Variables and Defines

A variable _identifier and define _identifier are expressions which identify a
variable or a define, respectively. Their syntax rules are:

define_identifier :: complex_identifier

variable_identifier :: complex_identifier

13

The syntax and semantics odmplex _identifiers are explained in Section 2.3.12 [Ref-
erences to Module Components], page 32. All defines andblasaeferenced in expressions
should be declared. All identifiers (variables, defines,lsyiin constants, etc) can be used prior
to their definition, i.e. there is no constraint on order sashn C where a declaration of a vari-
able should always be placed in text above the variable usenre information about define
and variable declarations in Section 2.3.2 [DEFINE Detians], page 26 and Section 2.3.1
[Variable Declarations], page 22.

A define is a kind of macro. Every time a define is met in expoessiit is substituted by the
expression associated with this define. Therefore, thedfaelefine is the type of the associated
expression in the current context.

variable _identifier represents state, input, and frozen variables. The type of
a variable is specified in its declaration. For more infoinratabout variables, see Sec-
tion 2.3 [Definition of the FSM], page 22, Section 2.3.1 [8tafariables], page 24, Sec-
tion 2.3.1 [Input Variables], page 24, and Section 2.3.b%En Variables], page 25. Since a

symbolic constant is syntactically indistinguishable fromariable _identifiers
anddefine _identifiers , a symbol table is used to distinguish them from each other.
Parentheses

Parentheses may be used to group expressions. The typevalitthe expression is the same as
the type of the expression in the parentheses.

Logical and Bitwise !

Thesignatureof the logical and bitwise NOT operatbris:

! : boolean — boolean
: unsigned word[N] — unsigned word[N]
: signed word[N] — signed word[N]

This means that the operation can be applidzbtmean, unsigned word[e] andsigned word[e]
operands. The type of the whole expression is the same agihefithe operand. If the operand
is not boolean, unsigned word[e] or signed word[e] then the expression violates the type
system and NSMV will throw an error.

Logical and Bitwise &, | , xor , xnor , - >, <- >

Logical and bitwise binary operato& (AND), | (OR),xor (exclusive OR)xnor (negated
exclusive OR); > (implies) and<- > (if and only if) are similar to the unary operatbr except
that they take two operands. Their signature is:

&, |, xor,xnor,->,<->: boolean* boolean — boolean
: unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]

the operands can be bbolean, unsigned word[e] or signed word[e] type, and the type of
the whole expression is the type of the operands. Note thhtkord operands should have the
same width.

Equality (=) and Inequality (! =)

The operators (equality) and = (inequality) have the following signature:

14

=,1= :boolean* boolean — boolean
: integer * integer — boolean
: symbolic enum * symbolic enum — boolean
: integers-and-symbolic enum * integers-and-symbolic enum — boolean
: unsigned word[N] * unsigned word[N] — boolean
: signed word[N] * signed word[N] — boolean

No implicit type conversion is performed. For example, ia #xpression
TRUE = 5
the left operand is of typboolean and the right one is of typmteger. Though the signature
of the operation does not havébaolean * integer rule, the expression is not correct, because
no implicit type conversion will be performed. One can usetthi nt or thebool for explicit
casts.
For example:

toint(TRUE) = 5

or

TRUE = bool(5)
This is also true if one of the operands is of typesigned word[1] and the other one is of the
typeboolean. Explicit cast must be used (e.g. usingr d1 or bool)

Relational Operators>, <, >=, <=

The relational operators (greater than)< (less than)>= (greater than or equal to) and=
(less than or equal to) have the following signature:

>, <, >=, <=!integer * integer — boolean
: unsigned word[N] * unsigned word[N] — boolean
: signed word[N] * signed word[N] — boolean

Arithmetic Operators +, -, *,/

The arithmetic operators (addition),- (unary negation or binary subtractior),(multiplica-
tion) and/ (division) have the following signature:

+,-,*,/ :integer* integer — integer
: unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]

- (unary) :integer — integer
: unsigned word[N] — unsigned word[N]
: signed word[N] — signed word[N]

Before checking the expression for being correctly typbd,implicit type conversion can be
applied toone of the operands. If the operators are appliedingigned word[N] or signed
word[N] type, then the operations are performed modiio

The result of the operator is the quotient from the division of the first operdny the
second. The result of the operator is the algebraic quotient with any fractional plistarded
(this is often called “truncation towards zero”). If the dgjienta/b is representable, the expres-
sion(a/b) *b + (a mod b) shall equala. If the value of the second operand is zero, the
behavior is undefined and an error is thrown by$MV. The semantics is equivalent to the
corresponding one of C/C++ languages.

In the versions of NSMYV prior to 2.4.0 the semantics of division was differenee$age
16 for more detail.

15

Remainder Operator nod

The result of thenod operator is the algebraic remainder of the division. If tladuge of the
second operand is zero, the behavior is undefined and angthsown by NUSMV.
The signature of the remainder operator is:

nod : integer * integer — integer
: unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]

The semantics ofrod operator is equivalent to the corresponding operétaf C/C++ lan-
guages. Thus if the quotieatb is representable, the expressiaib) *b + (a mod b)
shall equah.

Note: in older versions of NSMV (priori 2.4.0) the semantics of quotient and remainder
were different. Having the division and remainder opesfoandmod be of the current, i.e.
C/C++’s, semantics the older semantics of division wasrghwethe formula:

IF (amod b < 0) THEN (a/ b — 1) ELSE (a/ b)
and the semantics of remainder operator was given by theudfarm

IF (@mod b < 0) THEN (amod b + b) ELSE (amod b)

Note that in both versions the equati@b) *b + (a mod b) = a holds. For example,
in the current version of NuSMV the following holds:

7/5=1 7mod5=2

-7/5=-1 -7mod5=-2

7/-5=-1 7mod-5=2

-7/-5=1 -7mod -5=-2
whereas in the older versions on NuSMV the equations were

7/5=1 7mod5=2

-7/5=-2 -7Tmod5=3

7/-5=-1 7mod-5=2

-7/-5=0 -7mod -5=-7
When supplied, the command line option -aliy_op switches the semantics of division and
remainder to the old one.

Shift Operators <<, >>

The signature of the shift operators is:

<<, >>: unsigned word[N] * integer — unsigned word[N]

: signed word[N] * integer — signed word[N]

: unsigned word[N] * unsigned word[M] — unsigned word[N]

: signed word[N] * unsigned word[M] — signed word[N]
Before checking the expression for being correctly typee, right operand can be implicitly
converted fronboolean to integer type.

Left shift << (right shift>>) operation shifts to the left (right) the bits of the left oped by

the number specified in the right operand. A shift by N bitsgsiealent to N shifts by 1 bit. A
bit shifted behind the word bound is lost. During shifting ardis padded with zeros with the
exception of the right shift fosigned word[e], in which case a word is padded with its highest
bit. For instance,

Oub4.0101<< 2 is equal to 0sh3011>> 2 is equal to
Oub4.0100<< 1 is equal to 0sh3110>> 1 is equal to
Oub4.1000<< 0 is equal to 0sh3111>> 0is equal to
Oub4.1000 and Osh3 111

It has to be remarked that the shifting requires the rightameto be greater or equal to zero
and less then or equal to the width of the word it is appliedtoSMYV raises an error if a shift
is attempted that does not satisfy this restriction.

16

Index Subscript Operator[]

The index subscript operator extracts one element of aty amrtghe typical fashion. On the
left of [] there has to be an expression of array type. The index expnessthe brackets
has to be an expression iofteger or word[e] type with value greater or equal to lower bound
and less or equal to the upper bound of the array. The signaftine index subscript operator is:

[] :array N..M of subtype *word[N] — subtype
. array N..M of subtype *integer — subtype

For example, for below declaratiofs

MODULE main

VAR a : array -1 .. 4 of array 1 .. 2 of boolean;
DEFINE d := [[12, 4], [-1,2]];

VAR r : 0..1;

expressiona[-1] , a[0][r+1] and d[r][1] are valid wherea®[0] , a[0][r] and
d[o][r-1] will cause out of bound error.

Bit Selection Operator[:]

The bit selection operator extracts consecutive bits framsigned word[e] or signed word[e]
expression, resulting in a nemnsigned word[e] expression. This operation always decreases
the width of a word or leaves it intact. The expressions in liheckets have to be integer
constants which specify the high and low bound. The high bouost be greater than or equal
to the low bound. The bits count from 0. The result of the opena isunsigned word[e]
value consisting of the consecutive bits beginning fromhtgh bound of the operand down
to, and including, the low bound bit. For example, Qs911001[4:1] extracts bits 1 through 4
(including 1st and 4th bits) and is equal to Oub#00. 0ub3101[0:0] extracts bit number 0 and
is equal to Qub11l.

The signature of the bit selection operator is:
[:] :unsigned word[N]* integer, * integer, — unsigned word[integer, — integer, + 1]
: signed word[N] * integer,, * integer, — unsigned word[integer, — integer, + 1]

where0 < integer, < integer, <N

Word Concatenation Operator : :

The concatenation operator joins two wordsgigned word[e] or signed word[e] or both)
together to create a largansigned word[e] type. The operator itself is two colons:(), and
its signature is as follows:

1 word[M] * word[N] — unsigned word[M+N]

whereword[N] is unsigned word[N] or signed word[N]. The left-hand operand will make up
the upper bits of the new word, and the right-hand operandmake up the lower bits. The
result is alwaysunsigned word[e]. For example, given the two wordgl := Oub4 _1101
andw2 := 0sb2 _00, the result ofnv1: : w2is Oub6 110100 .

2See 2.3.3) for array defines and 2.3.1 for array variables.

17

Extend Word Conversions

ext end operator increases the width of a word by attaching additibits on the left. If the
provided word is unsigned then zeros are added, otherwtise Vord is signed the highest (sing)
bit is repeated corresponding number of times.

The signature of the operator is:

ext end : unsigned word[N] * integer — unsigned word[N+integer]
: signed word[N] * integer — signed word[N+integer]

For example:

ext end(0ub3101, 2) = 0ub500101
ext end(0sh3101, 2) = 0sb511101
ext end(0sh3011, 2) = 0sh30011

Note that the right operand efxt end has to be an integer constant greater or equal to zero.

Resize Word Conversions

resi ze operator provides a more comfortable way of changing thedvafra width. The
behavior of this operator can be described as follows:

let w be a M bitsunsigned word[e] and N be the required width: if M = N, w is returned
unmodified; if N is less than M, bits in the range [N-1:0] aréragted from w; if N is greater
than M, w is extended of (N - M) bits up to required width, padgivith zeroes.

let w be a M bitssigned word[e] and N be the required width: if M = N, w is returned
unmodified; if N is less than M, bits in the range [N-2:0] aréragted from w, while N-1-ith bit
is forced to preserve the value of the original sign bit of w{Nth bit); if N is greater than M,
w is extended of (N - M) bits up to required width, extendingrsbit.

The signature of the operator is:

resi ze : unsigned word[e] * integer — unsigned word[integer]
: signed word[e] * integer — signed word[integer]

Set Expressions

The set expression is an expression defining a sébofean, integer and symbolic enum
values. A set expression can be created withutheon operator. For example, uni on 0
specifies the set of valudsand0. One or both of the operands ohi on can be sets. In this
case,uni on returns a union of these sets. For example, expregdioruni on 0) uni on
-3 specifies the set of valuds 0 and-3 .
Note that there cannot be a set of sets in NuSBts can contain only singleton values, but
not other sets.
The signature of thani on operator is:
uni on : boolean set* boolean set — boolean set
:integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
. integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
Before checking the expression for being correctly typédt, is possible, both operands are
converted to their counterpaset types®, which virtually means converting individual values
to singleton sets. Then both operands are implicitly caedeto a minimal type that covers
both operands. If after these manipulations the operandetsatisfy the signature afni on
operator, an error is raised byu$ MV.

3See 2.1.6 for more information about thet types and their counterpart types

18

There is also another way to write a set expression by entimgrall its values between
curly brackets. The syntactic rule for the values in curlgdiets is:

set_body_expr ::
basic_expr
| set_body_expr , basic_expr

Enumerating values in curly brackets is semantically exjaivt to writing them connected
by uni on operators. For example, expressi@xpl, exp2, exp3 } is equivalent texpl
uni on exp2 uni on exp3. Note that according to the semanticsusfi on operator, ex-
pression{{1, 2 }, {3, 4 }}isequivalentto{1, 2, 3, 4 1}, i.e.thereisno actually set of
sets.

Set expressions can be used only as operandsiobn andi n operations, as the right
operand ofcase and as the second and the third operandeo? (e : e) expressions and
assignments. In all other places the use of set expressigmeliibited.

Inclusion Operator i n

The inclusion operatoi ‘n’ tests the left operand for being a subset of the right ogréreither
operand is a number or a symbolic value instead of a set, @gsced to a singleton set.
The signature of then operator is:

in :boolean set* boolean set — boolean
: integer set * integer set — boolean
: symbolic set * symbolic set — boolean
: integers-and-symbolic set * integers-and-symbolic set — boolean
Similar touni on operation, before checking the expression for being ctiyrégped, if it is
possible, both operands are converted to their countespatypes®. Then, if required, implicit
type conversion is carried out @meof the operands.

Case Expressions

A case expression has the following syntax:

case_expr :: case case_body esac
case_body ::
basic_expr : basic_expr ;
| case_body basic_expr : basic_expr ;

A case _expr returns the value of the first expression on the right hand sfd: ’, such that
the corresponding condition on the left hand side evaluat8 RUE For example, the result of
the expression

case
left_expression_1 . right_expression_1 ;
left_expression_2 . right_expression_2 ;
left_expression_N . right_expression_N ;
esac
isright _expression _k suchthatforali from0Otok—1,left _expression _ iSFALSE,

andleft _expression _k isTRUE Itis an error if all expressions on the left hand side evalu-
ate toFALSE

4See 2.1.6 for more information about thet types and their counterpart types

19

The type of expressions on the left hand side mudidmean. If one of the expression on
the right is of aset type then, if it is possible, all remaining expressions anrtght are converted
to their counterparset types®. The type of the whole expression is such a minimal tytpat all
of the expressions on the right (after possible convertaet types) can be implicitly converted
to this type. If this is not possible, MMV throws an error.

Note: Prior to version 2.5.1, usingy asleft _expression _Nwas pretty common, e.g:

case
condl : exprl;
cond2 : expr2;

1 : exprN; -- otherwise
esac
Since version 2.5.Integer values are no longer implicitly castedboolean, and1 has to
be written asTRUEinstead. For backward compatibility options, please see j58.
If-Then-Else expressions

In certain cases, the syntax described above may look a kérawIn simpler cases, itis possible
to use the alternative, terses,? o : o) expression. This construct is defined as follows:

cond_expr ? basic_exprl : basic_expr2

This expression evaluates to basiprl if the condition in congxpr evaluates to true, and
to basicexpr2 otherwise. Therefore, the expressiooedl ? expl : exp2 andcase
condl : expl; TRUE : expr2; esac are equivalent.

Basic Next Expression

Next expressions refer to the values of variables in the next state. For exampla
variablev is a state variable, thenext (v) refers to that variable in the next time step.
A next applied to a complex expression is a shorthand method of/@gphext to all the
variables in the expressions recursively. Exampiext (1 + a) + b) is equivalent to
(1 + next(a)) + next(b) . Note that thenext operator cannot be applied twice, i.e.
next (next (a)) isnotallowed.

The syntactic rule is:

basic_next_expr :: next (basic_expr)

A next expression does not change the type.

Count Operator

Thecount operator counts the number of expressions which are truec@tint operator is a
syntactic sugar for

toint (bool_exprl) +
toi nt (bool_expr2) +
.

toi nt (bool_exprN)

5See 2.1.6 for information oset types and their counterpart types
6See Section 2.1.7 [Type Order], page 9 for the informatiotherorder of types.

20

This operator has been introduced in version 2.5.1, to $iyrthle porting of those models which
exploited the implicit casting dhteger to boolean to encoding e.g. predicates like:

(bO + b1 + ... + bN) < 3 -- at most two bits are enabled
Since version 2.5.1, this expression can be written as:

count(bO + bl + ... + bN) < 3

2.2.4 Simple and Next Expressions

Simple _expressions are expressions built only from the values of variables endbrrent
state. Therefore, theimple _expression cannot have aext operation inside and the
syntax ofsimple _expressions s as follows:

simple_expr :: basic_expr

with the alternativébasic _next _expr not allowed. Simple _expressions can be used
to specify sets of states, for example, the initial set diestaThenext _expression relates
current and next state variables to express transitiorgeif EM. Thenext _expression can

havenext operation inside, i.e.

next_expr :: basic_expr

with the alternativébasic _next _expr allowed.

2.2.5 Type conversion operators
Integer conversion operator

t oi nt converts anunsigned word[e] constant or a signed word[e] constant , or a
boolean expression to amteger representing its value. Aldateger expressions are allowed,
but no action is performed. The signature of this conversjoerator is:

t oi nt :integer — integer

t oi nt : boolean — integer

t oi nt : unsigned word[e] — integer
t oi nt : signed word[e] — integer

Warning: using thet oi nt operator with word variables may cause bad performances of
the system. Performances may degrade with the increases afuimber of bits of the word
expression.

Boolean conversion operator

bool convertsunsigned word[1] andinteger expressions tboolean. Also boolean expres-
sions are allowed, but no action is perfomed. In casitefger expression, the result of the
conversion isSFALSE if the expression resolves ® TRUEotherwise. In case afinsigned
word[1] expression, the conversion obeys the following table:

bool (Oubl0) = FALSE
bool (Oubl1l) = TRUE
Integer to Word Constants Conversion

sweconst, uwconst convert aninteger constant into a signed word[e] constant or
unsigned word[e] constant of given size respectively. The signature of these conversi
operator is:

21

sweonst :integer * integer — signed word[e]
uwconst : integer * integer — unsigned word[e]

Where the lefinteger parameter is thealue and the righinteger parameter is theizein bits
of the generatednsigned word[e] or signed word[e] constant

Word1 Explicit Conversions

wor d1 converts doolean to aunsigned word[1]. The signature of this conversion operator is:
wor d1 : boolean — unsigned word[1]

The conversion obeys the following table:

wor d1(FALSE) = Oub10
wor d1(TRUE) = Oub11

Unsigned and Signed Explicit Conversions

unsi gned converts asigned word[N] to anunsigned word[N], while si gned performs the
opposite operation and converts amsigned word[N] to asigned word[N]. Both operations
do not change the bit representation of a provided word. Téeatures of these conversion
operators are:

unsi gned : signed word[N] — unsigned word[N]
si gned :unsigned word[N] — signed word[N]

For example:

si gned(Ouh.101) = Osh101

si gned(Oud35) = -0sd33

unsi gned(0Osh.101) = Ousb101
unsi gned(-0sd33) = 0ud35

2.3 Definition of the FSM

We consider a Finite State Machine (FSM) described in teffrsgate variablesinput variables
andfrozen variableswhich may assume different values in differstates of atransition rela-
tion describing how inputs leads from one state to possibly méfgrent states, and dfairness
conditionsthat describe constraints on the valid paths of the exetatithe FSM. In this docu-
ment, we distinguish among constraints (used to constnaihéhavior of a FSM, e.g. a modulo
4 counter increments its value modulo 4), and specificafiossd to express properties to verify
on the FSM (e.qg. the counter reaches value 3).

In the following it is described how these concepts can b&aded in the NNSMV language.

2.3.1 \Variable Declarations

A variable can be an input, a frozen, or a state variable. Buadation of a variable specifies
the variable’s type with the help of type specifier.

Type Specifiers

A type specifier has the following syntax:

type_specifier ::
simple_type_specifier
| module_type_specifier

22

simple_type_specifier ::

bool ean

word [basic_expr]

unsi gned word [basic_expr]

signed word [basic_expr]

{ enumeration_type_body }

basic_expr .. basic_expr

array basic_expr .. basic_expr
of simple_type_specifier

enumeration_type_body ::
enumeration_type_value
| enumeration_type_body , enumeration_type_value

enumeration_type_value :
symbolic_constant
| integer_number

There are two kinds dfype specifier : asimple type specifier and amodule
type specifier . Themodule type specifier is explained later in Section 2.3.11
[MODULE Instantiations], page 31. Th&mple type specifier compriseshoolean

type,integer type,enumeration types,unsigned word[e], signed word[e] and arrays types.

Theboolean type is specified by the keywoltbol ean.

A enumeration type is specified by full enumeration of all the values thestgpmprises.
For example, possiblenumeration type specifiers ar¢0,2,3,-1 }, {1,0, OK }, {OK,
FAIL, running }. FALSE and TRUEvalues cannot be used asumeration type speci-
fiers The values in the list are enclosed in curly bracketssaparated by commas. The values
may beinteger numbers |, symbolic constants , or both. All values in the list should
be distinct from each other, although the order of value®ismportant.

Note, expressions cannot be of the acem@imeration types, but only the simplified ver-
sions ofenumeration types, such asymbolic enum andintegers-and-symbolic enum.

A type specifier can be given by two expressions separated by<TWO DOTS>
The two expressions have both to evaluate to constantsintegnbers, and may contain names
of defines and module formal parameters. For examfile; P1 .. 5 + D1 , whereP1
refers to a module formal parameter, abd refers to a define. BotR1 andD1 have to be
statically evaluable to integer constants.

This is just a shorthand forenumeration type containing the list ahteger numbers
from the range given itype specifier . For example, théype specifiers -1..5
and{-1,0,1,2,3,4,5 } are equivalent. Note that the evaluated number on the taft the
two dots must be less than or equal to the evaluated numbéearght.

The unsigned word[e] type is specified by the keywordsnsi gned word (where
unsi gned may be skipped) with dasic _expr supplied in square brackets. The expres-
sion must be statically evaluable to a constant integer eumwhose value must be greater than
zero. Thesigned word[e] type is specified in a similar way with the keyworsisgned wor d.
The purpose of the word types is to offer integer and bitwighraetic.

An array type is denoted by a sequence of the keywaonday, abasic _expr specifying
the lower bound of the array index, two dots, abasic _expr specifying the upper bound of
the array index, the keyworlf , and the type of array’s elements. The elements can theasselv
be arrays. The two bound expressions have to be staticalyae to constant integer numbers,
and may contain names of defines and module formal parameters

23

State Variables

A state of the model is an assignment of values to a set of atatefrozen variables. State
variables (and also instances of modules) are declaredehyatation:

var_declaration :: VAR var_list

var_list :: identifier . type_specifier ;
| var_list identifier . type_specifier ;

A variable declaration specifies the identifier of the variables and its type. A \@ea
can take the values only from the domain of its type. In paldic a variable of @nhumeration
type may take only the values enumerated intyipe specifier of the declaration.

Input Variables

IVAR s (input variables) are used to label transitions of thet&iBtate Machine. The difference
between the syntax for the input and state variables deidasais the keyword indicating the
beginning of a declaration:

ivar_declaration :: I VAR simple_var_list
simple_var_list ::
identifier . simple_type_specifier ;
| simple_var_list identifier . simple_type_specifier ;

Another difference between input and state variables isitipait variables cannot be instances
of modules. The usage of input variables is more limited tharusage of state variables which
can occur everywhere both in the model and specificationsielainput variables cannot occur
in:

e Left-side of assignments. For example all these assigra@atnot allowed:

IVAR i : boolean;
ASSIGN
init(i) := TRUE;

next(i) := FALSE;

e INIT statements. For example:

IVAR i : boolean;
VAR s : boolean;
INIT i =s
e Scope ofnext expressions. For example:
IVAR i : boolean;

VAR s : boolean;
TRANS i -> s —thisis allowed
TRANS next(i -> s) —thisis NOT allowed
e Some specification kindsCTLSPEC SPEC INVARSPEC COMPUTHEPSLSPEC For
example:
IVAR i : boolean;
VAR s : boolean;
SPEC AF (i -> s) —thisis NOT allowed
LTLSPEC F (X i -> s) —thisis allowed
e Anywhere in the FSM when checking invariants with BMC and tb&AL’ algorithm.
See at page 86 for further information.

24

Frozen Variables

FROZENVAR (frozen variables) are variables that retain their ihit#due throughout the evo-
lution of the state machine; this initial value can be caistd in the same ways as for normal
state variables. Similar to input variables the differehedveen the syntax for the frozen and
state variables declarations is the keyword indicatingotginning of a declaration:

frozenvar_declaration :: FROZENVAR simple_var_list

The semantics of some frozen variahles that of a state variable accompanied by an assignment
that keeps its value constant (it is handled more efficietiiyugh):

ASSIGN next(a) = a;

As a consequence, frozen variables may not have their ¢uarah next value set in an
ASSIGNstatement, i.e. statements suchA&SIGN next(a) := expr; andASSIGN a
= expr; are illegal. Apart from that frozen variables may occur ie tiefinition of the FSM
in any place in which a state variable may occur. Some exangukeas follows:

e Left-side current and next state assignments are illegailevinit state assignments are
allowed:

FROZENVAR a : boolean;
FROZENVAR b : boolean;
FROZENVAR c : boolean;
VAR d : boolean;
FROZENVAR e : boolean;
ASSIGN
init(a) := d; -- legal
next(b) := d; -- illegal
c = d; -- illegal
e = a; -- also illegal
e INIT , TRANS INVAR, FAIRNESS JUSTICE, and COMPASSIONtatements are all
legal. So is the scope ofreext expression. For example:
-- the following has an empty state space
FROZENVAR a : boolean;
INIT a
INVAR la

-- alternatively, this has two initial states, deadlocking
FROZENVAR b : boolean;
TRANS next(b) <-> b

-- and that’s just unfair
FROZENVAR c : boolean;
FAIRNESS c

FAIRNESS !c

e All kinds of specifications involving frozen variables atowed, e.g.:
FROZENVAR c : boolean;
-- True by definition.
SPEC AG ((c -> AG c¢) & ((lc) -> AG o))
-- Here, neither is true.
INVARSPEC c
INVARSPEC !c
-- False (as above).
LTLSPEC (G F c) & (G F lc)

25

Examples

Below are examples of state, frozen, and input variableaglattbns:

VAR a : boolean;
FROZENVAR b : 0..1;
IVAR c : {TRUE, FALSE};

The variablea is a state variableh is a frozen variable, and is an input variable; In the
following examples:

VAR d : {stopped, running, waiting, finished 4
VAR e : {2, 4, 2,0 }
VAR f: {1, a 3,d, q, 4 }

the variablesl, e andf are ofenumeration types, and all their possible values are specified in
thetype specifiers of their declarations.

VAR g : unsigned word[3];
VAR h : word[3];
VAR i : signed word[4];

The variableg) andh are of 3-bits-widainsigned word type (i.e.unsigned word[3]), andi is
of 4-bits-widesigned word type (i.e.signed word[4]).

VAR j : array -1..1 of boolean;

The variablg is an array oboolean elements with indexes -1, 0 and 1.

2.3.2 DEFI NE Declarations

In order to make descriptions more concise, a symbol candmeded with a common expres-
sion, and &DEFI NE declaration introduces such a symbol. The syntax for tinid kf declaration
is:

define_declaration :: DEFI NE define_body

define_body :: identifier ;= simple_expr ;
| define_body identifier 1= simple_expr

DEFI NE associates aidentifier on the left hand side of the: =" with an expression

on the right side. A define statement can be considered as eomat’henever a define
identifier occurs in an expression, thdentifier is syntactically replaced by the ex-
pression it is associated with. The associated expressiatways evaluated in the context of
the statement where tlgentifier is declared (see Section 2.3.16 [Context], page 35 for an
explanation of contexts). Forward references to definecosisrare allowed but circular defini-
tions are not, and result in an error. The difference betvdedined symbols and variables is that
while variables are statically typed, definitions are not.

2.3.3 Array Define Declarations

Itis possible to specify an array expressions. This featuegperimental and currently available
only throughDEFI NE declaration. The syntax for this kind of declaration is:

26

array_define_declaration ::

DEFI NE identifier 1= array_expression ;
array_expression :: [array_contents]
| [array_expression_list]

array_expression_list :: array_expression
| array_expression , array_expression_list

array_contents :: next_expr , array_contents
| next_expr

Array DEFI NE associates aitentifier on the left hand side of the: =" with an array
expression. As a norm&8EFI| NE statement an array define is considered as a macro. Whenever
an arrayidentifier occurs in an expression, tieentifier is syntactically replaced by
the array expression it is associated with. As with norBiglFl NE an arrayDEFI NE expression
is always evaluated in the context of the statement wheredénatifier is declared and
forward references to defined symbols are allowed but @raigfinitions are not.

The type of an array expressifexpl, exp2, ..., expN] isarray 0..N-1 oftype
wheretype is the least type such that &kpl, exp2, ...expN can be converted to it.

It is not possible to declare asymmetrical arrays. This méhat it is forbidden to declare
an array with a different number of elements in a dimensiaor. é&xample, the following code
will result in an error:

DEFINE
x = [[1,2,3], [1,2]];

2.3.4 CONSTANTS Declarations

CONSTANTS declarations allow the user to explicitly declare symbobostants that might oc-
cur or not within the FSM that is being definedONSTANTS declarations are expecially useful
in those conditions that require symbolic constants to oooly in DEFI NEs body (e.g. in gen-
erated models). For an example of usage see also the commmaed _boolean _model . A
constant is allowed to be declared multiple times, as difiefitst declaration any further decla-
ration will be ignored CONSTANTS declarations are an extension of the original SMV grammar,
and they are supported since NuSMV 2.5. The syntax for tini@ &f declaration is:

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

2.3.5 | NI T Constraint

The set of initial states of the model is determined Hyoalean expression under theNl T
keyword. The syntax of alNIT constraint is:

init_constrain :: INI'T simple_expr [;]

Since the expression in thRIT constraint is asimple _expression , it cannot contain the
next () operator. The expression also has to be of tgpelean. If there is more than one
INIT constraint, the initial set is the conjunction of all of tlT constraints.

27

2.3.6 | NVAR Constraint

The set of invariant states can be specified usibg@ean expression under theNVAR key-
word. The syntax of aiNVAR constraint is:

invar_constraint :: I NVAR simple_expr [;]

Since the expression in thiVAR constraint is aimple _expression it cannot contain the
next () operator. Ifthere is more than oi¢VAR constraint, the invariant set is the conjunction
of all of theINVAR constraints.

2.3.7 TRANS Constraint

The transition relation of the model is a set of current étabet state pairs. Whether or not a
given pair is in this set is determined by a boolean exprasgitroduced by th& RANS keyword.
The syntax of &RANSconstraint is:

trans_constraint :: TRANS next_expr [;]

It is an error for the expression to be not of th@olean type. If there is more than oiERANS
constraint, the transition relation is the conjunction lbb& TRANSconstraints.

2.3.8 ASSI GN Constraint

An assignment has the form:

assign_constraint :: ASSI GN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier : = simple_expr
| init (complex_identifier) : = simple_expr
| next (complex_identifier) = next_expr
On the left hand side of the assignmeiutgntifier denotes the current value of a vari-

able, i ni t (identifier) ' denotes its initial value, andhext (identifier) ' denotes
its value in the next state. If the expression on the rightrgide evaluates to a neet expres-
sion such asnteger number or symbolic constant , the assignment simply means
that the left hand side is equal to the right hand side. On therdand, if the expression eval-
uates to a set, then the assignment means that the left ldenib giontained in that set. It is an
error if the value of the expression is not contained in tmgesof the variable on the left hand
side.
Semantically assignments can be expressed using other ddrobnstraints:

ASSIGN a := exp; is equivalent tdNVAR a in exp;
ASSIGN init(a) = exp; is equivalent tdNIT a in exp;
ASSIGN next(a) = exp; is equivalent tofRANS next(a) in exp;

Notice that, an additional constraint is forced when assigmts are used with respect to their
corresponding constraints counterpart: when a variatdssgned a value that it is not an ele-
ment of its declared type, an error is raised.

The allowed types of the assignment operator are:

28

: = :integer* integer
: integer * integer set
: symbolic enum * symbolic enum
: symbolic enum * symbolic set
: integers-and-symbolic enum * integers-and-symbolic enum
: integers-and-symbolic enum * integers-and-symbolic set
: unsigned word[N] * unsigned word[N]
: signed word[N] * signed word[N]
Before checking the assignment for being correctly typbd,implicit type conversion can be
applied to theight operand.

Rules for assignments

Assignments describe a system of equations that say how3hedvolves through time. With
an arbitrary set of equations there is no guarantee thatiGolexists or that it is unique. We
tackle this problem by placing certain restrictive syritantles on the structure of assignments,
thus guaranteeing that the program is implementable.

The restriction rules for assignments are:

e The single assignment rule- each variable may be assigned only once.

e The circular dependency rule— a set of equations must not have “cycles” in its depen-
dency graph not broken by delays.

The single assignment rule disregards conflicting defimiti@nd can be formulated as: one
may either assign a value to a variable',“or to “next (x) " and “i ni t (x) ", but not both.
For instance, the following are legal assignments:

Example 1| x : =expr 1 ;

Example2| init(x) :=expr;

Example 3| next (x) : =expr 1 ;

Example4| init(x) :=expr;
next (X) :=expr 2;

while the following are illegal assignments:

Example 1| x : =expr 1 ;
X = expra;
Example2| init(x) :=expr i;
init(x):=exprs;
Example 3| x : =expr 1 ;
init(x):=exprs;
Example 4| x : =expr 1 ;
next(x) :=expro;

If we have an assignment like: =y ; , then we say that depends ory. A combinatorial
loopis a cycle of dependencies not broken by delays. For instéine@ssignments:

X =y,
y =X
form a combinatorial loop. Indeed, there is no fixed order ol we can computg andy,

since at each time instant the valuexofdepends on the value f and vice-versa. We can
introduce a “unit delay dependency” using tiext () operator.

29

X =y
next(y) = x;

In this case, there is a unit delay dependency betweandy. A combinatorial loop is a cycle
of dependencies whose total delay is zero. l@SWV combinatorial loops are illegal. This
guarantees that for any set of equations describing thevlwetaf variable, there is at least one
solution. There might be multiple solutions in the case afasigned variables or in the case of
non-deterministic assignments such as in the followingreta,

next(x) := case x = 1 : 1;
TRUE : {01 };
esac;

2.3.9 FAI RNESS Constraints

A fairness constraint restricts the attention onlydin execution pathsWhen evaluating speci-
fications, the model checker considers path quantifiersptyamly to fair paths.

NUSMYV supports two types of fairness constraints, namelyigastonstraints and com-
passion constraints. A justice constraint consists of mfba f , which is assumed to be true
infinitely often in all the fair paths. In NSMV, justice constraints are identified by keywords
JUSTI CE and, for backward compatibilitfsAl RNESS. A compassion constraint consists of a
pair of formulas(p,q) ; if property p is true infinitely often in a fair path, then also formwja
has to be true infinitely often in the fair path. InISMV, compassion constraints are identified
by keyword COMPASSI ON. 7 If compassion constraints are used, then the model musonet ¢
tain any input variables. Currently, I MV does not enforce this so it is the responsibility of
the user to make sure that this is the case.

Fairness constraints are declared using the followingesy(ell expressions are expected to
beboolean):

fairness_constraint ::
FAI RNESS simple_expr [;]
| JUSTI CE simple_expr [;]
| COWVPASSI ON (simple_expr , simple_expr) [;]

A path is considered fair if and only if it satisfies all the stmaints declared in this manner.

2.3.10 MODULE Declarations

A module declaration is an encapsulated collection of datitans, constraints and specifica-
tions. A module declaration also opens a new identifier sc@ece defined, a module can be
reused as many times as necessary. Modules are used in sagttlaiveach instance of a mod-
ule refers to different data structures. A module can cantetances of other modules, allowing
a structural hierarchy to be built. The syntax of a moduldatation is as follows:

module :: MODULE identifier [(module_parameters)] [module_body]

module_parameters ::
identifier
| module_parameters , identifier

module_body ::
module_element

7In the current version of NSMV, compassion constraints are supported only for BDDetasTL
model checking. We plan to add support for compassion caingiralso for CTL specifications and in
Bounded Model Checking in the next releases ofS\WMV.

30

| module_body module_element

module_element ::
var_declaration

| ivar_declaration

| frozenvar_declaration

| define_declaration

| constants_declaration

| assign_constraint

| trans_constraint

| init_constraint

| invar_constraint

| fairness_constraint

| ctl_specification

| invar_specification

| Itl_specification

| compute_specification

| isa_declaration

The identifier immediately following the keywordVODULE is the name associated with

the module. Module names have a separate hame space in grarprand hence may clash

with names of variables and definitions. The optional listd&tifiers in parentheses are the

formal parameters of the module.

2.3.11 MODULE Instantiations

An instanceof a module is created using tAR declaration (see Section 2.3.1 [State Variables],
page 24) with a module type specifier (see Section 2.3.1 [Byeeifiers], page 22). The syntax
of amodule type specifier is:

module_type_specifier ::
| identifier [([parameter_list])]
| process identifier [([parameter_list])]

parameter_list ::

next_expr
| parameter_list , hext_expr
A variable declaration with enodule type specifier introduces a name for the module
instance. Thenodule type specifier provides the name of the instantiating module and

also a list of actual parameters, which are assigned to thealgparameters of the module. An
actual parameter can be any legaixt expression (see Section 2.2.4 [Simple and Next
Expressions], page 21). It is an error if the number of aghaahmeters is different from the
number of formal parameters. Whenever formal parameterardo expressions within the
module, they are replaced by the actual parameters. Thensienod module instantiation is
similar to call-by-referenc®.

Here are examples:

MODULE main
VAR
a : boolean;
b : foo(a);

8This also means that the actual parameters are analyzee aotitext of the variable declaration where
the module is instantiated, not in the context of the expwasshere the formal parameter occurs.

31

MODULE foo(x)
ASSIGN
X = TRUE;

the variablea is assigned the valuERUE This distinguishes the call-by-reference mechanism
from a call-by-value scheme.
Now consider the following program:

MODULE main
DEFINE

a = 0;
VAR

b : bar(a);
MODULE bar(x)
DEFINE

a = 1;

y =X

In this program, the value of is 0. On the other hand, using a call-by-name mechanism, the
value ofy would bel, sincea would be substituted as an expressionxfor
Forward references to module names are allowed, but circelerences are not, and result in
an error.

The keywordpr ocess is explained in Section 2.3.13 [Processes], page 33.

2.3.12 References to Module Components (Variables and Dedis)

As described in Section 2.2.3 [Variables and Defines], pa§edefines and variables can

be referenced in expressions eariable _identifiers and define _identifiers
respectively, both of which areomplex identifiers . The syntax of acomplex
identifier is:

complex_identifier ::

identifier
| complex_identifier . identifier
| complex_identifier [simple_expression]
| self

Every variable and define used in an expression should bareecl It is possible to have
forward references when a variable or define identifier isl taetually before the corresponding
declaration.

Notations with. (<DOT> are used to access the components of modules. For exafmple, i
is an instance of a module (see Section 2.3.11 [MODULE Itistéons], page 31 for information
about instances of modules) then the expressian identifies the componert of the module
instancem This is precisely analogous to accessing a component ofietsted data type.

Note that actual parameters of a module can potentially bmices of other modules.
Therefore, parameters of modules allow access to the coanp®f other module instances,
as in the following example:

MODULE main
VAR
a : bar;
m : foo(a);

32

MODULE bar

VAR
g : boolean;
p : boolean;

MODULE foo(c)
DEFINE
flag := c.q | c.p;

Here, the value ofrh.flag ’is the logicalORof ‘a.p "and ‘a.q .

Individual elements of an array are accessed in the typaslibn with the index given in
square brackets. See 2.2.3 for more information.

It is possible to refer to the name that the current modulebleas instantiated to by using
thesel f built-in identifier.

MODULE container(init_valuel, init_value2)
VAR cl : counter(init_valuel, self);
VAR c2 : counter(init_value2, self);

MODULE counter(init_value, my_container)

VAR v: 1..100;
ASSIGN

init(v) := init_value;
DEFINE

greatestCounterInContainer := v >= my_container.cl.v &
vV >= my_container.c2.v;

MODULE main
VAR c¢ : container(14, 7);
SPEC

c.cl.greatestCounterinContainer;

In this example an instance of the modattainer is passed to the sub-modueunter

In the main module,c is declared to be an instance of the modedatainer , which de-
clares two instances of the modweunter . Every instance of theounter module has a
definegreatestCounterinContainer which specifies the condition when this particular
counter has the greatest value in the container it belongs to. Smater needs access to
the parentontainer to access all theounters in thecontainer

2.3.13 Processes

Important!
Since NUSMV version 2.5.0 processes ateprecatedIn future versions of NSMV processes
may be no longer supported, and only synchronous FSM willpparted by the input languag
Modeling of asynchronous processes will have to be resavéiyher level.

o

Processes are used to model interleaving concurrenpyodesss a module which is instan-
tiated using the keywordr ocess’ (see Section 2.3.11 [MODULE Instantiations], page 31).
The program executes a step by non-deterministically ¢hgasprocess, then executing all of
the assignment statements in that process in parallelirtpicit that if a given variable is not
assigned by the process, then its value remains unchangaé. tiaat only assignments of the
form

ASSIGN next(var_name) := ... ;

33

are influenced by processes. All other kinds of assignmemntsl constraints (such 8RANS
INVAR, etc) are always in force, independent of which procesdéstas for execution.

Each instance of a process has a speb@blean variable associated with it, called
running . The value of this variable iFRUEIf and only if the process instance is currently
selected for execution. No two processes may be runningataime time.

Note that (only) in the presence of processes NuUSMV intgriaEclares special variables
running and_process _selector _. These names should NOT be used in user’'s own dec-
larations (when processes are used), but they can be regéefdor example in the transition
relation of a module.

Furthermore, if the user declarBigrocesses, there will g+1 processes allocated, as the
modulemain has always its own process associated. In the following plathere are three
processpl, p2 andmain :

MODULE my_module
-- my module definition...

MODULE main
VAR
pl : process my_module;
p2 : process my_module;

2.3.14 A Program and themai n Module
The syntax of a NSMV program is:

program :: module_list

module_list ::
module
| module_list module

There must be one module with the namain and no formal parameters. The moduaiain
is the one evaluated by the interpreter.

2.3.15 Namespaces and Constraints on Declarations

Identifiers in the NNSMV input language may reference five different entities:doies, vari-
ables, defines, module instances, and symbolic constants.

Module identifiers have their own separate namespace. Mddehtifiers can be used in
module type specifiers only, and no other kind of identifiers can be used there (see
Section 2.3.11 [MODULE Instantiations], page 31). Thusdmie identifiers may be equal to
other kinds of identifiers without making the program ambigst However, no two modules
should be declared with the same identifier. Modules canrotidrlared in other modules,
therefore they are always referenced by sinigéntifiers

Variable, define, and module instance identifiers are inited in a program when the mod-
ule containing their declarations is instantiated. Indtide module the variables, defines and
module instances may be referenced by the singgetifiers . Inside other modules, their
simple identifiers should be preceded by the identifier ofrtizglule instance containing their
declaration and (<DOT>. Such identifiers are callecbmplex identifier . Thefull
identifier is a complex identifier which references a variable, define, or a module in-
stance from inside theain module.

Let us consider the following:

MODULE main

34

VAR a : boolean;

VAR b : foo;
VAR ¢ : moo;
MODULE foo
VAR ¢ : boolean;
e : moo;
MODULE moo

DEFINE f := 0 < 1;

MODULE not_used
VAR n : boolean;
VAR t : used;

MODULE used
VAR k : boolean;

The full identifier of the variable is a, the full identifier of the variablg (from the module
foo) is b.q , the full identifier of the module instanee (from the modulefoo) is b.e , the
full identifiers of the defind (from the modulemoo) areb.e.f andc.f , because two module
instances contain this define. Notice that, the variablasdk as well as the module instance
t do not have full identifiers because they cannot be accessednfiain (since the module
not _used is not instantiated).

In the NUSMV language, variable, define, and module instances bétboge namespace,
and no two full identifiers of different variable, define, oodule instances should be equal.
Also, none of them can be redefined.

A symbolic constant can be introduced by a variable declaration if its type djaci
enumerates thgymbolic constant . For example, the variable declaration

VAR a : {OK, FAIL, waiting 4

declares the variablke as well as thesymbolic constants OK , FAIL andwaiting . The
full identifiers of thesymbolic constants are equal to their simpliglentifiers with
the additional condition — the variable whose declaratieciares theymbolic constants

also has a full identifier.

Symbolic constants have a separate namespace, so their identifiers may pdtentia
be equal, for example, variable identifiers. It is an errothé same identifier in an expression
can simultaneously refer tosymbolic constant and a variable or a define. gymbolic
constant may be declared an arbitrary number of times, but it must loladed at least once,
if it is used in an expression.

2.3.16 Context

Every module instance has its owantext in which all expressions are analyzed. The context
can be defined as the full identifiers of variables declarethénmodule without their simple
identifiers. Let us consider the following example:

MODULE main
VAR a : foo;
VAR b : moo;

MODULE foo
VAR ¢ : moo;

35

MODULE moo
VAR d : boolean;

The context of the modulmain is” (emptyf, the context of the module instanagand inside
the modul€foo) is‘a.” , the contexts of modulmoomay be'b.” (if the module instanck
is analyzed) anth.c.’ (if the module instanca.c is analyzed).

2.3.17 | SA Declarations

There are cases in which some parts of a module could be sharedg different modules, or
could be used as a module themselves. USNV it is possible to declare the common parts as
separate modules, and then useltB& declaration to import the common parts inside a module

declaration. The syntax of asa _declaration is as follows:
isa_declaration :: | SA identifier
whereidentifier must be the name of a declared module. T$® _declaration can be

thought as a simple macro expansion command, because thie@btite module referenced by
anISA command is replaced to th8A _declaration

Warning: | SA is a deprecated feature and will be removed from future eessiof
NuSMV. Therefore, avoid the use 8A _declarations . Use module instances instead.

2.4 Specifications

The specifications to be checked on the FSM can be expressechoral logics like Compu-
tation Tree Logic CTL, Linear Temporal Logic LTL extendedwiPast Operators, and Property
Specification Language (PSL) [psl03] that includes CTL afd with Sequencial Extended
Regular Expressions (SERE), a variant of classical reg@xpressions. It is also possible to an-
alyze quantitative characteristics of the FSM by specifyi@al-time CTL specifications. Spec-
ifications can be positioned within modules, in which casy thre preprocessed to rename the
variables according to their context.

CTL and LTL specifications are evaluated by 8MV in order to determine their truth or
falsity in the FSM. When a specification is discovered to beefaNuSMV constructs and prints
a counterexample, i.e. a trace of the FSM that falsifies thpepty.

2.4.1 CTL Specifications

A CTL specification is given as a formula in the temporal I0@iEL, introduced by the keyword
‘CTLSPEC' (however, deprecated keywor@PEC can be used instead.) The syntax of this
specification is:

ctl_specification :: CTLSPEC ctl_expr [;1]
| SPEC ctl_expr [;]
| CTLSPEC NAME name : = ctl_expr [;]
| SPEC NAME name : = ctl_expr [;]

The syntax of CTL formulas recognized byulSMV is as follows:

ctl_expr ::
simple_expr -- a simple boolean expression
| (ct_expr)
| ! ctl_expr -- logical not

9The modulemain is instantiated with the so called empty identifier whichruanbe referenced in a
program.

36

ctl_expr & ctl_expr -- logical and

I

| ctl_expr | ctl_expr -- logical or

| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr xnor ctl_expr -- logical NOT exclusive or
| ctl_expr -> ctl_expr -- logical implies

| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally

| EX ctl_expr -- exists next state

| EF ctl_expr -- exists finally

| AG ctl_expr -- forall globally

| AX ctl_expr -- forall next state

| AF ctl_expr -- forall finally

| E [ctl_expr U ctl_expr] -- exists until

| A [ctl_expr U ctl_expr] - forall until

Sincesimple _expr cannot contain th@ext operator,ctl _expr cannot contain it either.
Thectl _expr should also be hoolean expression.
Intuitively the semantics of CTL operators is as follows:

e EX pistrue in a state if there existsa states’ such that a transition goes frosno s’
andpis true ins’.

e AX pistruein astate if for all statess’ where there is a transition frosto s’, pis true
ins’.

e EF pis true in a statey if there exista series of transitionsy — s1, s1 — s2, ...,
Sn—1 — Sn SUch thapis true ins,,.

e AF pistrueina statey if for all series of transitionsy — s1, 51 — S2,...,8n—1 — Sn
pistrueins,.

e EG pistruein a statg if there existan infinite series of transitions — s1, s1 — s2,
... such thapis true ineverys;.

e AG p is true in a statey if for all infinite series of transitionsy — s1, s1 — s2,...p
is true ineverys;.

e E[p U q] istruein a state if there exista series of transitionsy — s1, s1 — s2,
..,8n—1 — Syn SUch thapis true ineverystate fromsy to s,,—1 andqis true in state,,.

e Al p U q] istruein a statey if for all series of transitionsg — s1, s1 — s2, ...,
Sn—1 — Sn, P IS true ineverystate froms to s,,—1 andqis true in states,,.

A CTL formula is true if it is true irall initial states.
For a detailed description about the semanticB®E operators, please see [psl03].

2.4.2 Invariant Specifications

Itis also possible to specify invariant specifications vgilecial constructs. Invariants are propo-
sitional formulas which must hold invariantly in the modérhe corresponding command is
I NVARSPEC, with syntax:

invar_specification :: I N\VARSPEC next_expr ;
I N\VARSPEC NAME name : = next_expr [;]

This statement is intuitively equivalent to
SPEC AG simple_expr ;

but can be checked by a specialised algorithm during rediliadmalysis and Invariant Spec-
ifications can contaimext operators. Fairness constraints are not taken into acchuirg
invariant checking.

37

2.4.3 LTL Specifications
LTL specifications are introduced by the keywdr@iL SPEC. The syntax of this specification is:

Itl_specification ::

LTLSPEC Itl_expr [
LTLSPEC NAME name

v

= It _expr [0]

The syntax of LTL formulas recognized byd$MYV is as follows:

Itl_expr ::
simple_expr -- a simple boolean expression
| (Itl_expr)
| ! Itl_expr -- logical not
| Itl_expr & Itl_expr - logical and
| Itl_expr | Itl_expr - logical or
| Itl_expr xor Itl_expr -- logical exclusive or
| Itl_expr xnor Itl_expr -- logical NOT exclusive or
| Itl_expr -> |tl_expr - logical implies
| Itl_expr <-> |tl_expr -- logical equivalence
-- FUTURE
| X Itl_expr -- next state
| G Itl_expr -- globally
| F Itl_expr -- finally
| Itl_expr U Itl_expr - until
| Itl_expr V Itl_expr -- releases
-- PAST
| Y Itl_expr -- previous state
| Z Itl_expr -- not previous state not
| H Itl_expr -- historically
| O Itl_expr -- once
| Itl_expr S Itl_expr -- since
| Itl_expr T Itl_expr - triggered

Intuitively the semantics of LTL operators is as follows:

X pistrue attimet if pis true at timet + 1.
F pistrue attimet if pis true atsometimet’ > ¢.
G pistrue at timet if pis true atall timest’ > t.

p U g is true at timet if q is true atsometime ' > ¢, andfor all time ¢ (such that
t <t’ <t')pistrue.

p V g istrue attimet if g holds atall time stepg’ > ¢ up to and including the time step
t"” wherep also holds. Alternatively, it may be the case thateverholds in which case
g must hold inall time steps’ > t.

Y pistrue attimet > to if pholds attime — 1. Y p is falseat timet,.

Z pisequivalent tor p with the exception that the expressiortrise at timet,.
H p is true at timet if p holds inall previous time steps < t.

O pis true at timet if p held inat least oneof the previous time steps$ < ¢.

p S qistrue at timet if g held at timet’ < ¢ andp holds inall time stepg” such that
t <t <t

p T qistrue attimet if p held at timet’ < ¢ andq holds inall time steps” such that
t' < t” < t. Alternatively, if p hasneverbeen true, theq must hold in all time steps’
such thato < ¢’ <t

38

An LTL formula is true if it is true at the initial time,.

In NUSMV, LTL specifications can be analyzed both by means of Bl2Bell reasoning, or
by means of SAT-based bounded model checking. In the casBbflased reasoning, 0N sMV
proceeds according to [CGH97]. For each LTL specificatidabéeau of the behaviors falsifying
the property is constructed, and then synchronously coetpadth the model. With respect to
[CGH97], the approach is fully integrated withinu$MYV, and allows full treatment of past
temporal operators. Note that the counterexample is gistena such a way to show that the
falsity of a LTL specification may contain state variablesichhhave been introduced by the
tableau construction procedure.

In the case of SAT-based reasoning, a similar tableau earigin is carried out to encode the
paths of limited length, violating the property.U$MV generates a propositional satisfiability
problem, that is then tackled by means of an efficient SATesdBCCZ99].

In both cases, the tableau constructions are completeigfeaent to the user.

Important Difference Between BDD and SAT Based LTL Model Cheking

If a FSM to be checked it not total (i.e. has deadlock state)miodel checking may return
different results for the same LTL specification dependingle verification engine used. For
example, for below model:

MODULE main

VAR s : boolean;
TRANS s = TRUE
LTLSPEC G (s = TRUE)

the LTL specification is proved valid by BDD-based model dfeg but is violated by SAT-
based bounded model checking. The counter-example foursists of one state=FALSE.

This difference between the results is caused by the fatBib&® model checking investi-
gates onlyinfinite paths whereas SAT-based model checking is able to deal @lsdinite paths.
Apparently infinite paths cannot ever hasre=ALSE as then the transition relation will not hold
between the consecutive states in the patHiniée path consisting of just one staseFALSE
violates the specificatio® (s = TRUE) and is still consistent with the FSM as the transition
relation is not taken ever and there is not initial conditioniolate. Note however that this state
is a deadlock and cannot have consecutive states.

In order to make SAT-based bound model checking ignore fpdtls it is enough to add a
fairness condition to themain module:

JUSTICE TRUE;

Being limited to fair paths, SAT-based bounded model chegliannot find a finite counter-
example and results of model checking become consistentBiD-based model checking.

2.4.4 Real Time CTL Specifications and Computations

NuSMV allows for Real Time CTL specifications [EMSS91]. uUSMV assumes that each
transition takes unit time for execution. RTCTL extends slyatax of CTL path expressions
with the following bounded modalities:

rtctl_expr ::
ctl_expr

| EBF range rtctl_expr

| ABF range rtctl_expr

| EBG range rtctl_expr

| ABG range rtctl_expr

| A [rtctl_expr BU range rtctl_expr]

| E [rtctl_expr BU range rtctl_expr]
range : integer_number .. integer_number

39

Given ranges must be non-negative.
Intuitively, the semantics of the RTCTL operators is asdab:

e EBF m . n p requires that there exists a path starting from a state, thatlpropertyp
holds in a future time instamf withm < i <n

e ABF m . n p requires that for all paths starting from a state, propptiglds in a future
time instant, withm <i: <n

e EBG m . n p requires that there exists a path starting from a state, thattpropertyp
holds in all future time instaniswithm <i <n

e ABG m . n p requires that for all paths starting from a state, propertyolds in all
future time instantg, withm <i <n

e E[p BUmM.n q] requires that there exists a path starting from a state, thath
propertyq holds in a future time instanf with m < ¢ < n, and propertyp holds in all
future time instantg, withm < j <1

e A[p BUmM.n g],requiresthat for all paths starting from a state, propettglds
in a future time instant with m < i < n, and property holds in all future time instants
jywithm < j <13
Real time CTL specifications can be defined with the follonsggtax, which extends the syntax
for CTL specifications. (keywordSPEC is deprecated)

rtctl_specification :: CTLSPEC rtctl_expr [7]
| SPEC rtctl_expr [0]
| CTLSPEC NAME name : = rtctl_expr [0]
| SPEC NAME name : = rtctl_expr [7]

With the COMPUTE statement, it is also possible to compute quantitativermédion on the
FSM. In particular, it is possible to compute the exact boondhe delay between two specified
events, expressed as CTL formulas. The syntax is the failpwi

compute_specification :: COWPUTE compute_expr [;]
COVWPUTE NAME name : = compute_expr [;]
where
compute_expr :: M N [rtctl_expr , rtctl_expr]
| MAX [rtctl_expr , rtctl_expr]
M N [start , final] returns the length of the shortest path from a statgart to a state

in final. For this, the set of states reachable fratartis computed. If at any point, we encounter
a state satisfyinginal, we return the number of steps taken to reach the state. léd figint is
reached and no computed states intereat theninfinity is returned.
MAX [start , final] returns the length of the longest path from a statgtamt to a state
in final. If there exists an infinite path beginning in a statesiart that never reaches a state
in final, theninfinity is returned. If any of the initial or final states is empty,rthendefineds
returned.

It is important to remark here that if the FSM is not total .(iiecontains deadlock states)
COVPUTE may produce wrong results. It is possible to check the FSNhagdeadlock states
by calling the commandheck _fsm.

2.4.5 PSL Specifications

NuSMV allows for PSL specifications as from version 1.01 of P@hguage Reference Manual
[psl03]. PSL specifications are introduced by the keywdPSLSPEC. The syntax of this
declaration (as from the PSL parsers distributed by IBML]PS:

40

pslspec_declaration :: PSLSPEC psl_expr [;]

PSLSPEC NAME name : = psl_expr [;]

where

psl_expr ::

psl_primary_expr

| psl_unary_expr

| psl_binary_expr

| psl_conditional_expr
| psl_case_expr

| psl_property

The first five classes define the building blockspgst _property and provide means of com-
bining instances of that class; they are defined as follows:

psl_primary_expr ::

number ;7 a numeric constant
| boolean ;; a boolean constant
| word ;7 a word constant
| var_id ;;a variable identifier

{ psl_expr , .. , pslLexpr }

{ psl_expr " {" psl_expr , e, "psl_expr" 1}

(pslexpr)

psl_unary_expr ::

psl_

+ psl_primary_expr

- psl_primary_expr

I psl_primary_expr

bool (psl_expr)

wordl (psl_expr)

uwconst (psl_expr, psl_expr)
sweonst (psl_expr, psl_expr)
si zeof (psl_expr)

toint (pslexpr)

signed (pslexpr)

unsi gned (psl_expr)

extend (psl_expr, psl_primary_expr)
resize (psl_expr, psl_primary_expr)
sel ect (psl_expr, psl_expr, psl_expr)
binary_expr ::

psl_expr + psl_expr
psl_expr uni on psl_expr
psl_expr in psl_expr
psl_expr - psl_expr
psl_expr * psl_expr
psl_expr | psl_expr
psl_expr % psl_expr
psl_expr == psl_expr
psl_expr 1= psl_expr
psl_expr < psl_expr
psl_expr <= psl_expr
psl_expr > psl_expr
psl_expr >= psl_expr

41

psl_expr & psl_expr
psl_expr | psl_expr
psl_expr xor psl_expr
psl_expr xnor psl_expr
psl_expr << psl_expr
psl_expr >> psl_expr

| psl_expr 11 psl_expr
psl_conditional_expr ::
psl_expr ? psl_expr : psl_expr
psl_case_expr ::
case
psl_expr : psl_expr ;
psl_expr : psl_expr ;
endcase

Among the subclasses pBl _expr we depict the claspsl _bexpr that will be used in the
following to identify purely boolean, i.e. not temporal pegssions. The class of PSL properties
psl _property is defined as follows:

psl_property ::
replicator psl_expr ;; a replicated property
| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property
replicator ::
forall var_id [index_range] i n value_set
index_range ::
[range]
range ::
low_bound : high_bound
low_bound ::
number
| identifier
high_bound ::
number
| identifier
| inf ;; inifite high bound
value_set ::
{ value_range , .. , value_range }
| bool ean
value_range ::
psl_expr
| range

The instances dfL_property are temporal properties built using LTL operators and SEREs
operators, and are defined as follows:

FL_property ::

;7 PRIMITIVE LTL OPERATORS
X FL_property

| X! FL_property

| F FL_property

42

"

| sequence |-> sequence [
| sequence | => sequence [

"
1

G FL_property
[FL_property U FL_property]
[FL_property W FL_property]

; SIMPLE TEMPORAL OPERATORS

al ways FL_property
never FL_property

next FL_property

next! FL_property
eventual | y! FL_property

FL_property until! FL_property
FL_property unti | FL_property
FL_property until!_ FL_property
FL_property until _ FL_property

FL_property bef ore! FL_property
FL_property bef ore FL_property
FL_property bef ore! _ FL_property
FL_property bef ore_ FL_property

; EXTENDED NEXT OPERATORS

X [number] (FL_property)
X! [number] (FL_property)
next [number] (FL_property)
next! [number] (FL_property)

next _a [range] (FL_property)

next _al! [range] (FL_property)
next _e [range] (FL_property)
next _e! [range] (FL_property)

next _event! (psl_bexpr) (FL_property)
next _event (psl_bexpr) (FL_property)
next _event! (psl_bexpr) [number] (FL_property)
next _event (psl_bexpr) [number] (FL_property)

next _event _a! (psl_bexpr) [psl_expr] (FL_property)
next _event_a (psl_bexpr) [psl_expr 1 (FL_property)
next _event_e! (psl_bexpr) [psl_expr] (FL_property)
next _event _e (psl_bexpr) [psl_expr] (FL_property)

;7 OPERATORS ON SEREs

| sequence (FL_property)
!
!

]
]

al ways sequence

G sequence

never sequence
eventual | y! sequence

wi t hin! (sequence_or_psl_bexpr , Ppsl_bexpr) sequence
wi thin (sequence_or_psl_bexpr , psl_bexpr) sequence

wi t hin! _ (sequence_or_psl_bexpr , psl_bexpr) sequence
wi t hi n_ (sequence_or_psl_bexpr , psl_bexpr) sequence

whi | enot! (psl_bexpr) sequence
whi | enot (psl_bexpr) sequence

43

| whilenot!_ (psl_bexpr) sequence
| whilenot_ (psl_bexpr) sequence
sequence_or_psl_bexpr ::
sequence
| psl_bexpr

Sequences, i.e. istances of clasguence , are defined as follows:

sequence ::
{ SERE }

SERE :
sequence

| psl_bexpr

;7 COMPOSITION OPERATORS

| SERE ; SERE

| SERE : SERE

| SERE & SERE

| SERE && SERE

| SERE | SERE

;7 RegExp QUALIFIERS

| SERE [* [count]]

| [* [count]]

| SERE [+]

| [+]

| psl_bexpr [= count]
| psl_bexpr [-> count]
count ::
number
| range

Istances ofOBEproperty are CTL properties in the PSL style and are defined as follows:

OBE_property ::
AX OBE_property
| AG OBE_property
| AF OBE_property
| A [OBE_property U OBE_property]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E[OBE_property U OBE_property]

The NUSMV parser allows to input any specification based on the granabove, but currently,
verification of PSL specifications is supported only for ti@EDsubset, and for a subset of PSL
for which it is possible to define a translation into LTL. Fbetspecifications that belong to these
subsets, it is possible to apply all the verification techa&jthat can be applied to LTL and CTL
Specifications.

2.5 Variable Order Input

It is possible to specify the order in which variables shaajgear in the BDD’s generated by
NuSMV. The file which gives the desired order can be read in ugiegi option in batch
mode or by setting thmaput _order _file environment variable in interactive mod8.

10Note that if the ordering is not provided by a user themSWV decides by itself how to order the vari-
ables. Two shell variablebdd _static _order _heuristics (see page 53) andars _order _type

44

2.5.1 Input File Syntax

The syntax for input files describing the desired variabedng is as follows, where the file
can be considered as a list of variable names, each of whishlmewon a separate line:

vars_list :: EMPTY
| var_list_item vars_list

var_list_item :: complex_identifier
| complex_identifier . integer_number

WhereEMPTYmeans parsing nothing.
This grammar allows for parsing a list of variable names efftillowing forms:

Complete_Var_Name -- to specify an ordinary variable
Complete_Var_Name[index] -- to specify an array variable e lement
Complete_Var_Name.NUMBER -- to specify a specific bit of a

-- scalar variable

whereComplete _Var _Nameis just the name of the variable if it appears in the moduiheN,
otherwise it has the module name(s) prepended to the siexdmple:

modl1.mod2...modN.varname

wherevarname is a variable inmodN and modN.varname is a variable inmodN-1, and
so on. Note that the module namwin is implicitely prepended to every variable name and
therefore must not be included in their declarations.
Any variable which appears in the model file, but not the drdgfile is placed after all the others
in the ordering. Variables which appear in the ordering fileriot the model file are ignored. In
both cases NSMYV displays a warning message stating these actions.

Comments can be included by using the same syntax as regul@MV files. That is, by
starting the line with- .

2.5.2 Scalar Variables

A variable, which has a finite range of values that it can tékencoded as a set bbolean
variables (i.e. bits). These boolean variables repredenbinary equivalents of all the possible
values for the scalar variable. Thus, a scalar variable ¢hattake values from 0 to 7 would
require threédoolean variables to represent it.

Itis possible not only to declare the position of a scalaialde in the ordering file, but each
of theboolean variables which represent it.
If only the scalar variable itself is named then all the baal®ariables which are actually used
to encode it are grouped together in the BDD package.
Variables which are grouped together will always remairt terach other in the BDD package
and in the same order. When dynamic variable re-orderingrised out, the group of variables
are treated as one entity and moved as such.
If a scalar variable is omitted from the ordering file theniil ae added at the end of the variable
order and the specific-bit variables that represent it vélignoouped together. However, if any
specific-bit variables have been declared in the orderieg($ite below) then these will not be
grouped with the remaining ones.
It is also possible to specify the location of specific biti@ales anywhere in the ordering. This
is achieved by first specifying the scalar variable nameérdsired location, then simply spec-
ifying Complete _Var _Name.i at the position where you want that bit variable to appear:

(see page 52) allow to control the ordering creation.

45

Complete _Var Name

Complete _Var _Name.i

The result of doing this is that the variable representirg thbit is located in a different position
to the remainder of the variables representing the restebits. The specific-bit variables
varname.0, ..., varname.i-1, varname.i+1, ..., varnamar&lgrouped together as before.

If any one bit occurs before the variable it belongs to, theai@ing specific-bit variables
are not grouped together:

Complete _Var _Name.i

Complete _Var Name

The variable representing thi€ bit is located at the position given in the variable orderngl
the remainder are located where the scalar variable naneelardd. In this case, the remaining
bit variables will not be grouped together.

This is just a short-hand way of writing each individual sfiecit variable in the ordering file.
The following are equivalent:

Complete _Var _Name.O Complete _Var _Name.0
Complete _Var Name.1l Complete _Var Name

Complete _Var _Name.N-1

where the scalar variabféomplete _Var Namerequires N boolean variables to encode all the
possible values that it may take. It is still possible to tBpecify other specific-bit variables at
later points in the ordering file as before.

2.5.3 Array Variables

When declaring array variables in the ordering file, eaclividdal element must be specified
separately. It is not permitted to specify just the name efdtray. The reason for this is that
the actual definition of an array in the model file is esselgtekhorthand method of defining a
list of variables that all have the same type. Nothing is gdiby declaring it as an array over
declaring each of the elements individually, and there iglifference in terms of the internal
representation of the variables.

2.6 Clusters Ordering

When NUSMYV builds a clusterized BDD-based FSM during model cortston, an initial sim-
ple clusters list is roughly constructed by iterating tigioalist of variables and by constructing
the clusters by picking the transition relation associdtedach variable in the list. Later, the
clusters list will be refined and improved by applying thestéwing alghorithm that the user
previoulsy selected (see partitioning methods at pageoB.fufther information).

In [WIKWLvdBRO6], Wendy Johnston and others from Universit Queensland, showed
that choosing a good ordering for the initial list of varieblthat is used to build the clusters
list may lead to a dramatic improvement of performances.y e experiments in a modified

46

version of NUSMV, by allowing the user to specify a variable ordering toused when con-
structing the initial clusters list. The prototype code bagn included in version 2.4.1, that
offers the new optiotrans _order _file to specify a file containing a variable ordering (see
at page 53 for further information).

Grammar of the clusters ordering file is the same of variatulering file presented in section
2.5 at page 44.

47

Chapter 3

Running NuSMV interactively

The main interaction mode of DEMYV is through an interactive shell. In this modesSMV
enters a read-eval-print loop. The user can activate theusMNuSMV computation steps
as system commands with different options. These stepsheaaftre be invoked separately,
possibly undone or repeated under different modalitieses&hsteps include the construction
of the model under different partitioning techniques, madecking of specifications, and the
configuration of the BDD package. The interactive shell of\MV is activated from the system
prompt as follows (NuSMV=is the default NJSMV shell prompt):

system _prompt> NuSMWV -int <RET>
NuSMvV>

When running interactively, NSMV first tries to read and execute commands from an
initialization file if such file can be found and is readabldess- s is passed on the command
line.

First, file master.nusmvrc is looked for in directory definied environment variable
NUSMV_LIBRARY _PATH or in default library path if no such variable is defindfino such
file exists, file .nusmvrc is looked for in user’'s home diregtand as a last attemp, .nusmvrc is
looked for in current directory. Commands in the initiatina file (if any) are executed consec-
utively. When initialization phase is completed the 8IMV shell is displayed and the system is
now ready to execute user commands.

A NUSMV command is a sequence of words. The first word specifiesdhenand to be
executed. The remaining words are arguments to the invoteuinand. Commands separated
by a '}’ are executed sequentially; theu$MV shell waits for each command to terminate
in turn. The behavior of commands can depend on environmaridhles, similar to “csh”
environment variables.

It is also possible to make 0DSMV read and execute a sequence of commands from a file,
through the command line optiersour ce:

system _prompt> NuSMWV -source cmdfile <RET>

-source cmd-file Starts the interactive shell and then executeSMV com-
mands from filecmd-file If an error occurs during a com-
mand execution, commands that follow will not be executed.
See also the variable on_failure _script _quits
The option- sour ce implies-i nt .

48

In the following we present the possible commands followethke related environment vari-
ables, classified in different categories. Every commaissvars to the optiorh by printing out
the command usage. When output is paged for some commartis(anp), it is piped through
the program specified by the UNIRAGERshell variable, if defined, or through the UNIX com-
mand “more”. Environment variables can be assigned a valtrethe “set” command. Com-
mand sequences tol$MV must obey the (partial) order specified in the Figure 3légicted
at page 112. For instance, it is not possible to evaluate pkessions before the model is
built.

A number of commands and environment variables, like thesdiry with file names,
accept arbitrary strings. There are a few reserved chasasteich must be escaped if they are
to be used literally in such situations. See the sectionribésg thehistory command, on
page 105, for more information.

The verbosity of NSMYV is controlled by the following environment variable.

verboselevel Environment Variable|

Controls the verbosity of the system. Possible values aegéns fromD (no messages) to
4 (full messages). The default valueOs

3.1 Model Reading and Building

The following commands allow for the parsing and compilatd the model into a BDD.

read_model - Reads a NuSMV file into NuSMV. Command|

read _-model [-h] [-i model-file]

Reads a NSMV file. If the -i option is not specified, it reads from the file specified in
the environment variabliemput _file

Command Options:

-i model-file Sets the environment variableinput _file to
model-file , and reads the model from the specified file.

input file Environment Variable|

Stores the name of the input file containing the model. It aagsdi by the “set” command
or by the command line optioni'. There is no default value.

pp-list Environment Variable|

Stores the list of pre-processors to be run on the input filerbét is parsed by NSMV.
The pre-processors are executed in the order specifieddyahable. The argument must
either be the empty string (specifying that no pre-proassace to be run on the input
file), one single pre-processor name or a space seperatefijie-processor names inside
double quotes. Any invalid names are ignored. The defanlbie.

flatten_hierarchy - Flattens the hierarchy of modules Command|

flatten _hierarchy [-h] [-d]

49

This command is responsible of the instantiation of modatesprocesses. The instantia-
tion is performed by substituting the actual parameterghifeformal parameters, and then
by prefixing the result via the instance name.
Command Options:

-d Delays the construction of vars constraints until needed

backward_compatibility Environment Variable|

It is used to enable or disable type checking and other fesfoirovided by NuSMV 2.5.
If set to1 then the type checking is turned off, andiS8MV behaves as the old versions
w.r.t. type checking and other features like writing of #aéd and booleanized SMV
files and promotion of boolean constants to their integentmmpart. If set td then the
type checking is turned on, and whenever a type error is etteced while compiling a
NUSMYV program the user is informed and the execution stopped.

Since NUSMV 2.5.1, backward compatibility mode introduces a parfieature from old
models which use constahtascase conditions, instead of forcing the use TRUE

The option by default it set t0.

type_checkingwarning_on Environment Variable|

Enables notification of warning messages generated by pieectyecking. If set t@, then
messages are disregarded, otherwise if séttteey are notified to the user. As default it
set tol.

show.vars - Shows model’s symbolic variables and their values Command |

show.vars [-h] [-s] [-f] [-] [-v] [-m | -0 output-file]

Prints a summary of the variables declared in the input filerddver, it prints also the list
of symbolic input, frozen and state variables of the modé¢hheir range of values (as
defined in the input file) if the proper command option is sfiedi

Command Options:

-S Prints only state variables.
-f Prints only frozen variables.
-i Prints only input variables.
-V Prints verbosely. Scalar variable’s values are not trattat
if too long for printing.
-m Pipes the output to the program specified by BRGER
shell variable if defined, else through the UNIX command
“more”.
-0 output-file Writes the output generated by the command to
output-file
show.dependencies Shows the dependencies for the given expi Command
sion

show_dependencies [-h] [-k bound] -e expression

50

Prints the set of variables that are in the dependency séteofiten expression. If the
bound is specified using the -k argument, then the computatiche dependencies is
done until the bound has been reached. If not specified, theattion is performed until
no new dependencies are found.

Command Options:

-h Shows the command usage

-k bound Sets the bound limit for the dependencies computation

-e expr The expression on which the dependencies are computed
encodevariables - Builds the BDD variables necessary to comp Command

the model into a BDD.

encode _variables [-h] [-i order-file]

Generates the boolean BDD variables and the ADD needed tmlemmopositionally the
(symbolic) variables declared in the model. The variablescaeated as default in the
order in which they appear in a depth first traversal of theanéhy.

The input order file can be partial and can contain variabtgsdeclared in the model.
Variables not declared in the model are simply discardedakbes declared in the model
which are not listed in the ordering input file will be creatstt appended at the end of
the given ordering list, according to the default ordering.

Command Options:

-i order-file Sets the environment variableput _order _file to
order-file , and reads the variable ordering to be used
from file order-file . This can be combined with the
write _order command. The variable ordering is written
to a file, which can be inspected and reordered by the user,
and then read back in.

input_order file Environment Variable|

Indicates the file name containing the variable orderinge@ed in building the model
by the ‘encode _variables ' command. A value for this variable can also be provided
with command line optior i . There is no default value.

write _order_dumps_bits Environment Variable|

Changes the behaviour of the commawite _order .

When this variable is setyrite _order will dump the bits constituting the boolean en-
coding of each scalar variable, instead of the scalar Variggelf. This helps to work
at bits level in the variable ordering file. See the commamide _order for further
information. The default value is.

write _order - Writes variable order to file. Command |

write _order [-h] [-b] [(-0 | -f) order-file]

Writes the current order of BDD variables in the file specifigal the-o option. If no
option is specified the environment varialdetput _order _file will be considered.

If the variableoutput _order _file s unset (or set to an empty value) then standard
output will be used.

51

By default, the bits constituting the scalar variables élirp are not dumped. When a
variable bit should be dumped, the scalar variable whichbibéelongs to is dumped
instead if not previously dumped. The result is a variabteedng containing only scalar
and boolean model variables.

To dump single bits instead of the corresponding scalaakites, either the optiofb can
be specified, or the environment variableite _order _dumps_bits must be previ-
ously set.

When the boolean variable dumping is enabled, the singdenlitoccur within the result-
ing ordering file in the same position that they occur at BDile

Command Options:

-b Dumps bits of scalar variables instead of the
single scalar variables. See also the variable
write _order _dumps_bits

-0 order-file Sets the environment variableutput _order _file to
order-file and then dumps the ordering list into that
file.

-f order-file Alias for the -o option. Supplied for backward
compatibility.

output_order _file Environment Variable|

The file where the current variable ordering has to be writtemalue for this variable can
also be provided with command line optien. The default value istemp.ord ’

vars_order_type Environment Variable|

Controls the manner variables are ordered by default, whesmrible ordering is
not specified by a user and not computed statically by héesistsee variables
input _order _file onpage51anddd_static _order _heuristics on page 53).
The individual bits of variables may or may not be interlehvé/hen bits interleaving is
not used then bits belonging to one variable are grouped toggtlike ordering. Other-
wise, the bits interleaving is applied and all higher bitsabfvariables are ordered before
all the lower bits, i.e. N-th bits of all variables go befofé-{)th bits. The exception is
boolean variables which are ordered before variables ofctingr type though boolean
variables consist of only 0-th bit.

The value ofvars _order _type may be:

e inputs_before. Input variables are forced to be ordetforestate and frozen vari-
ables (default). No bits interleaving is done.

e inputs_after. Input variables are forced to be orderaftier state and frozen vari-
ables. No bits interleaving is done.

e topological Input, state and frozen variables are ordered as they afardd in the
input smv file. No bits interleaving is done.

e inputs_before_bi. Bits areinterleavedand in every group of N-th bits input variables
are forced to be orderdukforestate and frozen variables. This is the default value.

e inputs_after_bi. Bits areinterleavedand in every group of N-th bits input variables
are forced to be ordereafter state and frozen variables.

e topologicalbi. Bits areinterleavedand in every group of N-th bits input, state and
frozen variables are ordered as they are declared in thé snpufile.

e lexicographic. This is deprecated valutpological has to be used instead.

52

bdd_static_order_heuristics Environment Variable|

When a variable ordering is not specified (see variaipet _order _file on page 51)
NuUSMV can try to guess a good ordering by analyzing the inputehod

Possible values are:

e noneNo heuristics are applied.
e basic This heuristics creates some initial ordering and then maoealar and

word variables in this ordering to form groups. Groups go aiffter another
and every group contains variables which interact with eattier in the model.
For example, having variables,b,c,d,e,f and a single model constraint
TRANS next(a)=b+1 -> (next(c)=d/e & next(f)!=a) will results
in 2 groups of variable$¢a,b,f } and{c,d,e }.

Shell variablevars _order _type (page 52) provides additional control over the
heuristics. In particular, it allows to put input/stateiastes in the initial ordering
at the begin, the end or in topological order. Moreover, & ¥alue of this variable
is ending in_bi then in very individual group the bits of variables are aiddially
interleaved.

Note that variable groups created by the heuristics hasingptio do with BDD
package groups which disallow dynamic reordering of véesin one group. After
the heuristics is applied the dynamic reordering may moyebétrof any variable at
any position.

build_model- Compiles the flattened hierarchy into a BDD Command|

build

_model [-h] [-f] [-m Method]

Compiles the flattened hierarchy into a BDD (initial statemariants, and transition
relation) using the method specified in the environmentatéeipartition _method
for building the transition relation.

Command Options:
-m Method Sets the environment variableartition _method to

the valueMethod , and then builds the transition relation.
Available methods aréMonolithic , Threshold and
Iwls95CP .

-f Forces model construction. By default, only one partition
method is allowed. This option allows to overcome this de-
fault, and to build the transition relation with differerdnti-
tioning methods.

partition _method Environment Variable|

The method to be used in building the transition relatiord sm compute images and
preimages. Possible values are:

e Monolithic. No partitioning at all.
e Threshold. Conjunctive partitioning, with a simple threshold hetids Assign-

ments are collected in a single cluster until its size grower ¢the value specified
in the variableconj _part _threshold . It is possible (default) to use affinity
clustering to improve model checking performance. &éaity variable.

53

e |wIs95CP. Conjunctive partitioning, with clusters generated ardeoed according
to the heuristic described in [RAM5]. Works in conjunction with the variables
image _cluster _size , image -W1 image W2 image W3 image W4 It is
possible (default) to use affinity clustering to improve mlochecking performance.
Seeaffinity variable. It is also possible to avoid (default) preordgiof clusters
(see [RAP 95]) by setting théwls95preorder variable appropriately.

conj_part_threshold Environment Variable|

The limit of the size of clusters in conjunctive partitioginThe default value i® BDD
nodes.

affinity Environment Variable|

Enables affinity clustering heuristic described in [MHSQ®]ssible values a@or 1. The
default value isl.

trans_order _file Environment Variable|

Reads the a variables list from fite file, to be used when clustering the transition rela-
tion. This feature has been provided by Wendy Johnston,ddsity of Queensland. The
results of Johnston’s research have been presented at Fd/irz®@amilton, Canada. See
[WIKWLvdABRO6].

image._cluster_size Environment Variable|

One of the parameters to configure the behaviour ofwh&95CPpartitioning algorithm.
image _cluster _size is used as threshold value for the clusters. The defaulevialu
1000 BDD nodes.

imageW{1,2,3,4 Environment Variable|

The other parameters for thels95CP partitioning algorithm. These attribute different
weights to the different factors in the algorithm. The défaalues ares, 1, 1, 6 respec-
tively. (For a detailed description, please refer to [R7AB].)

iwls95preorder Environment Variable|

Enables cluster preordering following heuristic desdatiiie [RAP™95], possible values
are0 or 1. The default value i§. Preordering can be very slow.

image verbosity Environment Variable|

Sets the verbosity for the image methHeds95CR possible values ai@ or 1. The default
value is0.

print _iwls950ptions- Prints the Iwls95 Options. Command|

print _iwls95options [-h]
This command prints out the configuration parameters ofMHe395 clustering algorithm,
i.e.image _verbosity ,image _cluster _size andimage “W1,2,3,4 }.

go- Initializes the system for the verification. Command |

go [-h] []

54

This command initializes the system for verification. It igualent to the
command sequencesad _model , flatten _hierarchy , encode _variables ,
build _flat _model, build _model .

If some commands have already been executed, then onlyrtteniag ones will be in-
voked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.
getinternal _status- Prints out the internal status of the system. Command |

get _internal _status [-h]
Prints out the internal status of the system. i.e.

e -1:read _-model has not yet been executed or an error occurred during itsiexec
tion.

e 0O: flatten _hierarchy has not yet been executed or an error occurred during
its execution.

e 1: encode _variables has not yet been executed or an error occurred during its

execution.
e 2: build _model has not yet been executed or an error occurred during itsiexec
tion.
processmodel - Performs the batch steps and then returns cont Command

to the interactive shell.

process _model [-h] [-f] [-r] [-I model-file] [-m Method]

Reads the model, compiles itinto BDD and performs the madetking of all the specifi-
cation contained in it. If the environment varialideward _search has been set before,
then the set of reachable states is computed. If the optiois specified, the reordering
of variables is performed and a dump of the variable ordeisnuerformed accordingly.
This command simulates the batch behavior @fS\YV and then returns the control to
the interactive shell.

Command Options:

-f Forces the model construction even when Cone Of Influence
is enabled.
-r Forces a variable reordering at the end of the computation,

and dumps the new variables ordering to the default order-
ing file. This options acts like the command line option

-reorder

-i model-file Sets the environment variableinput _file to
file model-fle , and reads the model from file
model-file

-m Method Sets the environment variableartition _method to

Method and uses it as partitioning method.

55

build flat_model - Compiles the flattened hierarchy into a Scal Command
FSM

build _flat _model [-h]

Compiles the flattened hierarchy into SEXP (initial stategariants, and transition rela-
tion).

build _booleanmodel - Compiles the flattened hierarchy int Command
boolean Scalar FSM

build _boolean _model [-h] [-f]

Compiles the flattened hierarchy into boolean SEXP (ingfates, invariants, and transi-
tion relation).

Command Options:
-f Forces the boolean model construction.

write _flat_model - Writes a flat model to a file Command |

write _flat _model [-h] [-A] [-0 filename]

Writes the currently loaded SMV model in the specified filagahaving flattened it.
Processes are eliminated and a corresponding equivaletel isgrinted out.

If no file is specified, the file specified via the environment rialale
output _flatten _model file is used if any, otherwise standard output is
used.

Command Options:
-0 filename Attempts to write the flat SMV model ifilename

-A Writes the flat SMV model using a renaming map to “anon-
imize” the model. All the symbols except numerical con-
stanst will be renamed.

output_flatten_modelLfile Environment Variable|

The file where the flattened model has to be written. The defalue is Stdout .

daggifier_depth_threshold Environment Variable|

Sets the minimum threshold for expressions depth to be fladgi

daggifier_counter_threshold Environment Variable|

Sets the minimum threshold for expressions count to be fladgi(i.e. expression must
show at leasNumber time to be daggified

daggifier_statistics Environment Variable|

Prints daggifier statistics after model dumping.

56

write _booleanmodel - Writes a flat and boolean model to a file Command |

write _boolean _model [-h] [-0 filename]

Writes the currently loaded SMV model in the specified filagahaving flattened and
booleanized it. Processes are eliminated and a corresgpeduivalent model is printed
out.

If no file is specified, the file specified via the environment rialsle
output _boolean _model file is used if any, otherwise standard output is
used.

Command Options:

-0 filename Attempts to write the flat and boolean SMV model in
filename

In NuSMV 2.5 scalar variables are dumpedRiE-I NEs whose body is their boolean
encoding.

This allows the user to still express and see parts of therg@teboolean model in terms
of the original model’s scalar variables names and valuas séll keeping the generated
model purely boolean.

Also, symbolic constants are dumped withiB@ISTANTS statement to declare the values
of the original scalar variables’ for future reading of trengrated file.

When NUSMV detects that there were triggered one or more dynamiclegimgs in the
BDD engine, the commandrite _boolean _model also dumps the current variables
ordering, if the optioroutput _order _file is set.

The dumped variables ordering will contain single bits @acvariables depending on the
current value of the optiowrite _order _dumps_bits . See commandrite _order

for further information about variables ordering.

output_booleanmodelfile Environment Variable|

The file where the flattened and booleanized model has to lieemwriThe default value is
‘stdout ’

write _pred_clustersmodel - Writes flat models corresponding t Command
clusters of predicates

write _pred _clusters _model [-h] [-0 filename] [-p] [-n
number-list] [-v var-list] [-f filename] [-b] [-a] [-m
mapfile] [-c filename]

Writes flat models corresponding to clusters of predicates

Command Options:

-0 filename Attempts to write the SMV models iflename
-p Outputs also predicates for every cluster
-n num-list Outputs only clusters specified by num-list, which is a

comma separated list of cluster numbers (beginning with 0).
WARNING: no spaces are allowed between numbers and
commas

57

-v var-list

-f filename

-m filename

-c filename

output_word_format

Outputs only clusters which include at least one of varigble
specified in var-list, which is a comma separated list of iden
tifier. WARNING: no spaces are allowed between vars and
commas.NOTE: single and double quotes can be used to
wrap one another in var names.

For every cluster a scalar FSM is output with only those
constraints which depend on variables of the corresponding
cluster.flename is a prefix of generated files

Instead of scalar an abstract boolean FSM is output. This
option can be used only together with -f

The same as -b but aggressive boolean abstraction is used.
This option implicitly adds -b and can be used only together
with -f.

Outputs abstraction map into the specified file. This option
can be used only together with -b or -a

Generate CEGAR test models for predicate abstraction into
afile.filename is a prefix of generated files.

Environment Variable|

This variable sets in which basesigned word[e] and signed word[e] constants are
outputted (during traces, counterexamples, etc, prihtiRgssible values are 2, 8, 10 and
16. Note that if a part of an input file is outputted (for exaeii a specification expression
is outputted) then thansigned word[e] andsigned word[e] constants remain in same
format as they were written in the input file.

3.2 Commands for Checking Specifications

The following commands allow for the BDD-based model cheglaof a NuSMV model.

computereachable- Computes the set of reachable states Command |

compute _reachable [-h] [-k number] [-t seconds]

Computes the set of reachable states. The result is thertasgdplify image and preim-
age computations. This can result in improved performafaesodels with sparse state
spaces. Sometimes the execution of this command can taketimebecause the compu-
tation of reachable states may be very expensive. Uséthogtion to limit the number of
forward step to perform. If the reachable states has beeadyjrcomputed the command
returns immediately since there is nothing more to compute.

Command Options:
-k number

-t seconds

If specified, limits the computation of reachable states to
perform number steps forward starting from the last com-
puted frontier. This means that you can expand the com-
puted reachable states incrementally using this option.

If specified, forces the computation of reachable states to
end after “seconds” seconds. This limit could not be precise
since the if the computation of a step is running when the
limit occurs, the computation is not interrupted until timele

of the step

58

print _reachablestates- Prints out the number of reachable state Command|

print _reachable _states [-h] [-v] [-d] [-f] [-0 filename]

Prints the number of reachable states of the given modelertoose mode, prints also the
list of all reachable states. The reachable states are dechguneeded.

Command Options:

-V Prints the list of reachable states

-d Prints the list of reachable states with defines (Requirgs -v
-f Prints the formula representing the reachable states

-0 filename Prints the result on the specifiéitename instead of on

standard output

checkfsm - Checks the transition relation for totality. Command|

check fsm [-h] [-m | -0 output-file]

Checks if the transition relation is total. If the transiti@lation is not total then a potential
deadlock state is shown.
Command Options:

-m Pipes the output generated by the command to the pro-
gram specified by thPAGERshell variable if defined, else
through the UNIX command “more”.

-0 output-file Writes the output generated by the command to the file
output-file

At the beginning reachable states are computed in orderaragtee that deadlock states
are actually reachable.

checkfsm Environment Variable|

Controls the activation of the totality check of the traiwsit relation during the
process _model call. Possible values afeor 1. Default value i<.

print _fsm_stats- Prints out information about the fsm and cluste Command
ing.

print _fsm_stats [-h] | [-m] | [-p] | [-0 output-file]

This command prints out information regarding the fsm archeduster. In particular for
each cluster it prints out the cluster number, the size oftthster (in BDD nodes), the
variables occurring in it, the size of the cube that has toumntified out relative to the
cluster and the variables to be quantified out.

Also the command can print all the normalized predicatesRMS consists of. A
normalized predicate is a boolean expression which doeha other boolean sub-
expressions. For example, expressfprO0 ? a/b : 0) = ¢ is normalized into
(b<0 ? a/b=c : 0=c) which has 3 normalized predicates insi#&0, a/b=c ,
0=c.

59

Command Options:

-h
-m

P

-0 output-file

print _fair _states- Prints out the number of fair states

Prints the command usage.

Pipes the output generated by the command to the pro-
gram specified by thBAGERshell variable if defined, else
through the UNIX command “more”.

Prints out the normalized predicates the FSM consists of.
Expressions in properties are ignored.

Writes the output generated by the command to the file
output-file

Command|

print _fair _states [-h] [-V]
Prints the number of fair states of the given model. In veebhusde, prints also the list of

all fair states.

print _fair _transitions - Prints out the number of fair states

Command||

print _fair _transitions [-h] [-V]

Prints the number of fair transitions of the given model. énbose mode, prints also the
list of all fair transitions. The transitions are displayesistate-input pairs.

checkctlspec- Performs fair CTL model checking.

Command|

check _ctlspec [-h] [-m | -0 output-file] [-n number | -p
"ctl-expr [IN context]" | -P "name"]

Performs fair CTL model checking.

A ctl-expr

to be checked can be specified at command line using oppan

Alternatively, option-n can be used for checking a particular formula in the property
database. If neithen nor-p nor-P are used, all the SPEC formulas in the database are

checked.

Command Options:

-m

-0 output-file

-p "ctl-expr [IN
context]"

-n number

-P name

Pipes the output generated by the command in processing
SPECs to the program specified by tiRAGERshell vari-
able if defined, else through the UNIX command “more”.
Writes the output generated by the command in processing
SPECs to the fileoutput-file

A CTL formula to be checked.context is the module
instance name which the variablescit-expr must be
evaluated in.

Checks the CTL property with indexumber in the prop-

erty database.

Checks the CTL property nametame in the property
database.

60

If the ag_only _search environment variable has been set, then a specializedthigor
to check AG formulas is used instead of the standard modekatg algorithms.

Since version 2.4.1 this command substitutesck _spec that isdeprecated

checksspec- Performs fair CTL model checking. Command|

check _spec [-h] [-m | -0 output-file] [-n number | -p
"ctl-expr [IN context]"]
Performs fair CTL model checking.

Since version 2.4.1 this commanddeprecatedut still provided for backward compati-
bility reasons. Useheck _ctlspec instead.

agonly_search Environment Variable|

Enables the use of an ad hoc algorithm for checking AG formwul@iven a formula of
the formAG alpha the algorithm computes the set of states satisfgilpipa and checks
whether it contains the set of reachable states. If thistish&ocase, the formula is proved
to be false.

forward _search Environment Variable|

Enables the computation of the reachable states duringreess _model command
and when used in conjunction with tlag_only _search environment variable enables
the use of an ad hoc algorithm to verify invariants. Sincesizer 2.4.0, this option is set
by default.

Itl _tableau_forward _search Environment Variable|

Forces the computation of the set of reachable states faabiheau resulting from BDD-
based LTL model checking, performed by commaheck _ltlspec . If the variable
Itl _tableau _forward _search is not set (default), the resulting tableau will inherit
the computation of the reachable states from the modelaifled. If the variable is set, the
reachable states set will be calculated for the madelifor the tableau resulting from LTL
model checking. This might improve performances of the camtitheck _ltispec
but may also lead to a dramatic slowing down. This variablke dféect only when the
calculation of reachable states for the model is enablesff¢gseard _search).

oreg justice_emptinessbdd_algorithm Environment Variable|

The algorithm used to determine language emptiness of diBag transition sys-
tem. The algorithm may be used from the following commandseck _ltilspec
check _pslspec . Possible values are:

e EL _bwd The default value. The Emerson-Lei algorithm [EL86] in itual back-
wards direction, i.e., using backward image computations.

e EL fwd A variant of the Emerson-Lei algorithm that uses only for-
ward image computations (see, e.g., [HKQO3]). This variaaguires
the variables forward _search , Itl _tableau _forward _search ,
use _reachable _states to be set. Furthermore, counterexample compu-
tation is not yet implemented, i.epunter _examples should not be set. When
invoking one of the commands mentioned above, all requiettthgs are performed
automatically if not already found as needed, and are edtaiter execution of the
command.

61

checkinvar - Performs model checking of invariants Command|

check _invar [-h] [-m | -0 output-file] [-n number | -p
"invar-expr [IN context]" | -P "name"] [-s strategy] [-e
forward-backward-heuristic] [-j bdd-bmc-heuristic] [-t
threshold] [-k length]

Performs invariant checking on the given model. An invariara set of states. Checking
the invariant is the process of determining that all sta¢astable from the initial states lie
in the invariant. Invariants to be verified can be providegiawgple formulas (without any
temporal operators) in the input file via tidVARSPECkeyword or directly at command
line, using the optionp .

Option-n can be used for checking a particular invariant of the modeleither-n nor
-p are used, all the invariants are checked.

During checking of invariants all the fairness conditiossaciated with the model are
ignored.

If an invariant does not hold, a proof of failure is demonsda This consists of a path
starting from an initial state to a state lying outside thaimant. This path has the property
that it is the shortest path leading to a state outside traismt.

A search strategy can be specified wish option. This is useful to speed up the check
in some situations. If “forward-backward” or “bdd-bmc” ategy is specified then it is

possible to choose a search heuristic wéhoption; “bdd-bmc” strategy has some other
options explained below.

62

Command Options:
-m

-0 output-file

-p "invar-expr [IN
context]"

-P name

-s strategy

-e f-b-heuristic

Pipes the output generated by the program in processing
INVARSPECSs to the program specified by tHRAGER
shell variable if defined, else through the UNIX command
“more”.

Writes the output generated by the command in processing
INVARSPEG:s to the fileoutput-file

The command line specified invariant formula to be verified.
context is the module instance name which the variables
in invar-expr must be evaluated in.

Checks the INVAR property nametame in the property
database.

Chooses the strategy to use while performing reachability
analysis. Possible strategies are:

e “forward” Explore the search space from initial states
and try to reach bad states.

e “backward” Explore the search space from bad states
and try to reach initial states.

o “forward-backward” Explore the search space using a
heuristic to decide at each step whether to move from
bad states or from reachable states.

e “bdd-bmc” Explore the search space using BDD
with “forward-backward” strategy and use a heuris-
tic (specified with-j option) to decide if to switch
from BDD technology to BMC. The idea is to expand
the sets of states reachable from both bad and initial
states, eventually stop and search for a path between
frontiers using BMC technology. Optiorg , -t and
-k are enabled only when using this strategy. Note
that the algorithm used for the BMC approach is the
one specified in the variable “bmaovar_alg”.

If this option is not specified, the value of the environment
variable “checkinvar_strategy” is considered.

Specify the heuristic that decides at each step if we must ex-
pand reachable states or bad states. This option is enabled
only when using “forward-backward” or “bdd-bmc” strate-
gies. Possible values are “zigzag” and “smallest”. “zigzag
forces to perform a step forward and the next step backward
an so on, while “smallest” performs a step from the frontier
with the BDD representing the state is smaller. If this op-
tion is not specified, the value of the environment variable
“check.invar_forward.backwardheuristic” is considered.

63

-j bdd-bmc-heuristic When using “bdd-bmc” strategy specify the heuristic that
decides at which step we must switch from BDD to BMC
technolgy. You should use the optieh to specify the
threshold for the chosen heuristic. Possible heuristies ar
“steps” and “size”. “steps” forces to switch after a num-
ber of steps equal to the threshold, while “size” switch
when BDDs are bigger (in the number of nodes) than the
threshold. If this option is not specified, the value of
the environment variable “chedkvar.bddbmcheuristic” is
considered.

-t threshold When using “bdd-bmc” strategy specify the threshold for the
chosen heuristic. If this option is not specified, the valfie o
the environment variable “chedkvar_bddbmcthreshold”
is considered.

-k length When using “bdd-bmc” strategy specify the maximum
length of the path to search for during BMC search. If this
option is not specified, the value of the environment vagabl
“bmc_length” is considered.

checkinvar _strategy Environment Variable|

Determines default search strategy to be used when usinmaach“checkinvar”.
See the documentation of “cheahvar” for a detailed description of possible values
and intended semantics.

check.invar _forward _backward_heuristic Environment Variable|

Determines default forward-backward heuristic to be uséerwusing command
“check.invar”. See the documentation of “cheahkvar” for a detailed description of
possible values and intended semantics.

check.invar _bdd_bmc_heuristic Environment Variable|

Determines default bdd-bmc heuristic to be used when usinghintand
“checkinvar’. See the documentation of “chegtvar” for a detailed description
of possible values and intended semantics.

checkinvar _bdd_bmc_threshold Environment Variable|

Determines default bdd-bmc threshold to be used when usiognmand
“checkinvar”. See the documentation of “cheatvar” for a detailed description
of possible values and intended semantics.

checkltlspec- Performs LTL model checking Command|

check _ltispec [-h] [-m | -0 output-file] [-n number | -p

“Itl-expr [IN context]" | -P "name"]

Performs model checking of LTL formulas. LTL model checkiageduced to CTL model
checking as described in the paper by [CGH9I7].

A ltl-expr to be checked can be specified at command line using ogtior\lterna-
tively, option-n can be used for checking a particular formula in the propdatabase. If
neither-n nor-p are used, all the LTLSPEC formulas in the database are ctiecke

64

Command Options:
-m Pipes the output generated by the command in process-
ing LTLSPEG to the program specified by tHeAGER
shell variable if defined, else through the UNIX command

“more”.

-0 output-file Writes the output generated by the command in processing
LTLSPEG to the fileoutput-file

-p "ltl-expr [IN An LTL formula to be checked.context is the module

context]" instance name which the variablesltlrexpr must be
evaluated in.

-P "name" Checks the LTL property namathme

-n number Checks the LTL property with indemumber in the prop-

erty database.

compute- Performs computation of quantitative characteristics Command|

compute [-h] [-m | -0 output-file] [-n number | -p

"compute-expr [IN context]" | -P "name"]

This command deals with the computation of quantitativeattaristics of real time sys-
tems. It is able to compute the length of the shortest (Iaygegh from two given set of
states.

MAX [alpha , beta]
MIN [alpha , beta]

Properties of the above form can be specified in the input iileéhe keywordCOMPUTE
or directly at command line, using optiep .

If there exists an infinite path beginning in a statestart that never reaches a state in
final, theninfinity is returned. If any of the initial or final states is empty,rithdefineds
returned.

Option-n can be used for computing a particular expression in the mdideeither -n
nor-p are used, all the COMPUTE specifications are computed.

It is important to remark here that if the FSM is not total .(itecontains deadlock states)
COVPUTE may produce wrong results. It is possible to check the FSNhagdeadlock
states by calling the commartieck _fsm.

Command Options:

-m Pipes the output generated by the command in process-
ing COMPUT& to the program specified by tHeAGER
shell variable if defined, else through the UNIX command
“more”.

-0 output-file Writes the output generated by the command in processing
COMPUT#to the fileoutput-file

-p "compute-expr [IN A COMPUTE formula to be checked. context
context]" is the module instance name which the variables in
compute-expr must be evaluated in.

65

-n number Computes only the property with indeximber .

-P name Checks the COMPUTE property namadme in the prop-
erty database.

check property - Checks a property into the current list of prope Command
ties, or a newly specified property

check _property [-h] [-n number | -P "name"] | [(-c | -I | -i

| -s | -q) [-p "formula [IN context]"]

Checks the specified property taken from the property lishdals the new specified prop-
erty and checks it. It is possible to checkL, CTL, INVAR, PSL and quantitative
(COMPUTHproperties. Every newly inserted property is inserted eretked.

Command Options:

-n number Checks the property stored at the given index
-P name Checks the property nameéme in the property database.
-C Checks all theCTL properties not already checked. If -p is

used, the given formula is expected to b8 H. formula.
-l Checks all theLTL properties not already checked. If -p is
used, the given formula is expected to beTd formula.

-i Checks all theNVAR properties not already checked. If
-p is used, the given formula is expected to b&N¥AR

formula.

-S Checks all thePSL properties not already checked.-fif is
used, the given formula is expected to bR formula.

-q Checks all theCOMPUTgroperties not already checked. If
-p is used, the given formula is expected to LE@QMPUTE
formula.

-p “formula [IN Checks the formula specified on the command-line.

context]" context is the module instance name which the variables

informula must be evaluated in.

add_property - Adds a property to the list of properties Command |

add _property [-h] [(-c | -1 | -i | -g | -S) -p "formula

[IN context]"]

Adds a property in the list of properties. It is possible teartLTL, CTL, INVAR,

PSL and quantitativeQOMPUTEproperties. Every newly inserted property is initialized
to unchecked. A type option must be given to properly exethéeommand.

Command Options:

-C Adds aCTL property.

-l Adds anLTL property.

-i Adds anINVAR property.

-S Adds aPSL property.

-q Adds a quantitativeGOMPUT)property.

66

-p "formula [IN Adds the formula specified on the command-line.
context]" context is the module instance name which the variables
in formula must be evaluated in.

show property - Shows the currently stored properties Command|

show_property [-h] [-n idx | -P "name"] [-c | -l | -i | -S|

-l [F1-v|-u] [m]-0]

Shows the properties currently stored in the list of prapsrtThis list is initialized with
the properties (CTL, LTL, INVAR, COMPUTE) present in the utgdile, if any; then all of
the properties added by the user with the relativeck _property oradd _property
commands are appended to this list. For every property,al@fing informations are
displayed:

o the identifier of the property (a progressive number);
e the property formula;
o the type (CTL, LTL, INVAR, COMPUTE)

e the status of the formula (Unchecked, True, False) or thatre§the quantitative
expression, if any (it can be infinite);

e if the formula has been found to be false, the number of theesponding coun-
terexample trace.

By default, all the properties currently stored in the ligpmperties are shown. Specifying
the suitable options, properties with a certain status fldoked, True, False) and/or of a
certain type (e.g. CTL, LTL), or with a given identifier, it gossible to let the system
show a restricted set of properties. It is allowed to insaety @ne option per status and
one option per type.

Command Options:

-P name Prints out the property named "name”
-n idx Prints out the property numbered "idx”
-C Prints only CTL properties

-l Prints only LTL properties
-i Prints only INVAR properties

-q Prints only COMPUTE properties

-u Prints only unchecked properties

-t Prints only those properties found to be true

-f Prints only those properties found to be false

-S Prints the number of stored properties

-0 filename Writes the output generated by the commanfilémame

-m Pipes the output through the program specified by the

PAGER shell variable if defined, else through the UNIX
"more” command

67

write _coi_model - Writes a restricted flat model to a file Command |

write _coi _-model [-h] [-n idx | -p "expr" | -P "name"] [-C |

A -] -s | -] [-C] [-d]

Writes the currently loaded SMV model in the specified filégahaving flattened it. If
a property is specified, the dumped model is the result ofyappthe Cone Of Influence
over that property. otherwise, a restricted SMV model is pedhfor each property in the
property database.

Processes are eliminated and a corresponding equivaletel isgrinted out.
If no file is specified, stderr is used for output

Command Options:

-0 filename Attempts to write the flat SMV model ifilename

-p expr Applies COI for the given expression expression. Notice
that also the property type has to be specified

-P name Applies COl for property named "name”

-n idx Applies COI for property stored with index "idx”

-C Dumps COI model for all CTL properties

| Dumps COI model for all LTL properties
-i Dumps COI model for all INVAR properties

-S Dumps COI model for all PSL properties
-q Dumps COI model for all COMPUTE properties
-C Only prints the list of variables that are in the COI of
properties
-g Dumps the COI model that represents the union of all COI
properties
coneof.influence Environment Variable|

Uses the cone of influence reduction when checking progerti¢hen cone of influence
reduction is active, the problem encoded in the solvingrengonsists only of the relevant
parts of the model for the property being checked. This caattyrhelp in reducing solving

time and memory usage. Note however, that a COI counter-gbeainrace may or may not

be a valid counter-example trace for the original model.

usecoi_sizesorting Environment Variable|

Uses the cone of influence variables set size for properntigg, before the verification
step. If set to 1, properties are verified starting with the tmat has the smallest COI
set, ending with the property with the biggest COI set. Iftedd, properties are verified
according to the declaration order in the input file

3.3 Commands for Model Simplification

In this section we describe in detail the commands for periiog simplifications of the given
model. Currently NNSMV provides two types of simplifications: Model Simplifiga and
Range Reduction.

68

Model Simplification works at the Sexp Scalar Fsm level, igay equivalences and in-
variants from assignment&$S| GN expressions) and invariants VAR expressions). These
learned expressions are then used for performing inlinireg the whole model, reducing the
number of variables. All removed variables are then reated adDEFI NE in order to produce
traces that are compatible with the original model.

Range Reduction also works at the Sexp Scalar Fsm level. tdaas predicates from
the given model and builds a new language where the domaiheof/ariables is an over-
approximation of their original domain. Predicates areaoted froml NI T and TRANS. Cur-
rently unsigned words, scalar enumeratives and scalayantae supported.

Both simplification systems have a dedicated command forpihugrthe simplified version
of the model. NSMV also provides an LTL verification command which appliesifications
before performing model checking.

write _simplified_model - Writes a simplified flat model to a file Command |

write _simplified _model [-h] [-0 filename]

Writes the currently loaded SMV model in the specified filagahaving flattened and

simplified it. Processes are eliminated and a corresporslimglified model is printed
out.

If no file is specified, standard output is used.
Command Options:
-0 filename Attempts to write the simplified SMV model filename

write _reduced.model - Writes a reduced flat model to a file Command |

write _reduced _model [-h] [-0 filename] [-f fixpoint]

Writes the currently loaded SMV model in the specified filéeahaving flattened it and

reduced it's variable ranges. Processes are eliminated aattesponding reduced model
is printed out.

If no file is specified, standard output is used.
Command Options:
-0 filename Attempts to write the flat SMV model ifilename

-f fixpoint Sets the fixpoint to be used for range extraction. Default is
20. Must be a non-negative integer

checkltlspec_simpl - Performs LTL model checking using simp Command
fications

check _ltlspec _simpl [-h] [-m | -0 output-file] [-n number |

-p "ltl-expr [IN context]" | -P prop _name] [-s] * [-r] =
Performs model checking of LTL formulas. LTL model checkiageduced to CTL model
checking as described in the paper by [CGH97].

The model on which the model checking is performed is singalifising the Model Sim-
plifier and the Range Reduction systems.

By default, Model Simplification and Range Reduction aredubet a chain of simplifica-

tions to be performed over the model can be specified usingsthrend the-r command
options.

69

A ltl-expr to be checked can be specified at command line using ogtiorAlter-
natively, optionsn and-P can be used for checking a particular formula in the property

database. If neithen nor-p nor-P are used, all the LTLSPEC formulas in the database
are checked.

70

Command Options:

-p "Itl-expr [IN An LTL formula to be checked.context is the module

context]" instance name which the variablesltlrexpr must be
evaluated in.

-P "prop _name" Checks the LTL property namgatop _name

-n number Checks the LTL property with indemumber in the prop-
erty database.

-S Adds Model Simplification to the chain of simplifications.

This option can be used multiple times

-r Adds Range Reduction to the chain of simplifications. This
option can be used multiple times

3.4 Commands for HRC

In this section we describe in detail the commands for mdaimg and using the hierarchical
structure. Hierarchical structure is a structure usedpoesent your SMV model.

hrc_counter_acceleration - Finds counters in the current mode Command
and creates its accelerated version.

hrc _counter _acceleration [-h] [-c] [-0 filename] [-i iv file]

[-I counter _limit file] [-v] [-V] [-s] [-p]

This commands creates an "accelerated” version of therumedel changing the behav-

ior of counter variables. A counter is a word variable thanialized to0, can be enabled

by an arbitrary boolean expression and that when enableedses byl at each step until

a limit value is reached or the enabled condition is falseeé counter reaches the limit

or is disabled it is reset t0. The accelerated model is such that in a single step counters
possibly increase their value by a number greater than

Note that the accelerated model does not preserve all giep@f the model except in-
variants.

If no file is specified the standard output is used.
Command Options:
-h Shows a brief description of the available options.

-C Performs a check on the constraints that predicate on aounte
variables.

-0 filename Writes output to “filename” instead of stdout.

-i iv file Read the counter names from the specifiedfilis” instead
of searching in the model matching the counter structure.

-l counter _limit _file Read the counter names and limit values from the specified
“countectlimit_file” instead of searching in the model match-
ing the counter structure. The file must be in the following
format:

SIMPWFFA ¢ <=L
where c is the counter name and L is the limit value.

71

-v Removes the properties of the model and adds three proper-
ties for every counter. These properties must hold for alvali
counter.

-V Adds an invariant property in the accelerated model to check
whether the counter acceleration is really useful or not. If
the property does not hold, then the counter acceleration
may be useful, otherwise the counter acceleration is yotall
useless.

-S This option has to be used in conjunction with. If spec-
ified this option enables the synthetization of limits foe th
counters specified in the “ifile”.

-p This option has to be used in conjunction with. If en-
abled, instead of write the accelerated model with the syn-
thetized limits, outputs a list of pairs (counter, limit)time
format of the “countedimit file”.

3.5 Commands for Guided Reachability

In this section we describe in detail the commands for udiegGuided Reachability algorithm
implementation in NSMV.

checkinvar_gr - Performs model checking of invariants usir Command
guided reachability algorithm

check _invar _gr [-h] [-n number | -p "invar-expr [IN

context]" | -P "name"] [-s] [-S] [-d] [-a] [-u] -e

"psl _expr" | sere file

Performs invariant checking using the given scenario omgiven model. An invariant is a
set of states. Checking the invariant is the process of miétérg that all states reachable
from the initial states lie in the invariant. Invariants ®\erified can be provided as simple
formulas (Only temporal operator allowed is “next”) in tmput file via thelNVARSPEC
keyword or directly at command line, using the optipn.

Option-n or -P can be used for checking a particular invariant of the motfeieither
-n nor-p nor-P are used, all the invariants are checked.

The scenario must be a valid PSL formula. Allowed PSL opesadce: “;[+] | &”
Command Options:

-p "invar-expr [IN The command line specified invariant formula to be verified.

context]" context is the module instance name which the variables
in invar-expr must be evaluated in.

-n "idx" Verifies the invariant with index “idx” within the Property
Database

-P "name" Verifies the invariant named “name” within the Property
Database

-s Uses model simplification over the given model

-S Enables model simplification in each cluster of the guided
reachability

72

Disanles the reachability analysis completion. This means
that only the scenario is executed, and found reachabksstat
are not assured to be complete. Invariants cannot be set to
true if this option is given

-a Stop verification at the first property found false.

-u Change the semantics of the ”;” operator from SEQUENCE
to UNION.

-e "psl _expr" Provide the scenario from command line. This is an alterna-
tive to provide the scenario with an external file

sere file Provide the scenario from file. This is an alternative to pro-
vide the scenario with the -e option The PSL expression
must start with the 'grsequence’ keyword

computereachablegr - Computes the set of reachable states | Command

ing Guided Reachability algorithm

compute _reachable
"psl _expr" | sere

gr [-h] [-s] [-S] [-P] [-D] [-d] [-u] -e

Computes the set of reachable states of the given model @irded Reachability algo-
rithm over the given scenario. The result is then used toléfiynimage and preimage com-
putations. This can result in improved performances for el®dith sparse state spaces.
If the reachable states has been already computed the cahretamns immediately since
there is nothing more to compute.

The scenario must be a valid PSL formula. Allowed PSL opesadce: “;[+] | &”

Command Options:

-S
-S

-d

-e "psl

sere _file

_expr"

Uses model simplification over the given model

Enables model simplification in each cluster of the guided
reachability

Disanles the reachability analysis completion. This means
that only the scenario is executed, and found reachablkesstat
are not assured to be complete. Invariants cannot be set to
true if this option is given

Enable command debugging

Enable command profiling

Change the semantics of the ”;” operator from SEQUENCE
to UNION.

Provide the scenario from command line. This is an alterna-
tive to provide the scenario with an external file

Provide the scenario from file. This is an alternative to pro-
vide the scenario with the -e option The PSL expression
must start with the 'grsequence’ keyword

3.6 Commands for Bounded Model Checking

In this section we describe in detail the commands for doimd) @ontrolling Bounded Model
Checking in NUSMV. Bounded Model Checking is based on the reduction of thented

model checking problem to a propositional satisfiabilitplgem. After the problem is gen-
erated, NSMV internally calls a propositional SAT solver in order todian assignment which

73

satisfies the problem. Currentlyd$MV supplies two SAT solvers: Zchaff and MiniSat. If
none of the two is enabled, all Bounded Model Checking pakurs MV will not be available.
Notice that Zchaff and MiniSat are for non-commercial pwg®only. They are therefore not
included in the source code distribution or in some of thatyiristributions of NSMV.

Some commands for Bounded Model Checking use incremergatitims. These algo-
rithms exploit the fact that satisfiability problems genedafor a particular bounded model
checking problem often share common subparts. So infoomaibtained during solving of
one satisfiability problem can be used in solving of anothes. oThe incremental algorithms
usually run quicker then non-incremental ones but requB&®& solver with incremental inter-
face. At the moment, only Zchaff and MiniSat offer such amifgce. If none of these solvers
are linked to NUSMV, then the commands which make use of the incrementatitiges will
not be available.

Itis also possible to generate the satisfiability problerthatit calling the SAT solver. Each
generated problem is dumped in DIMACS format to a file. DIMAS $he standard format used
as input by most SAT solvers, so it is possible to useSNMV with a separate external SAT
solver. Atthe moment, the DIMACS files can be generated oplgdmmands which do not use
incremental algorithms.

bmc_setup- Builds the model in a Boolean Epression format. Command|

bmc_setup [-h]

You must call this command before use any other bmc-relatethtand. Only one call
per session is required.

go_bmc - Initializes the system for the BMC verification. Command |

go_bme [-h] []

This command initializes the system for verification. It igu&alent to the
command sequencesad _model , flatten _hierarchy , encode _variables ,
build _boolean _model ,bmc_setup . If some commands have already been executed,
then only the remaining ones will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.

sexpinlining Environment Variable|

This variable enables the Sexp inlining when the booleanahisdouilt. Sexp inlining is
performed in a similar way to RBC inlining (see system vagabc _inlining) but the
underlying structures and kind of problem are differentauese inlining is applied at the
Sexp level instead of the RBC level.

Inlining is applied to initial states, invariants and triias relations. By default, Sexp
inlining is disabled.

rbc_inlining Environment Variable|

When set, this variable makes BMC perform the RBC inlininfolbe committing any

problem to the SAT solver. Depending on the problem strectund length, the inlining
may either make SAT solving much faster, or slow it down driéeadly. Experiments

showed an average improvement in time of SAT solving when RBi€ing is enabled.

RBC inlining is enabled by default.

The idea about inlining was taken from [ABEOO] by Parosh A&xiodulla, Per Bjesse and
Niklas Eén.

74

rbc_rbc2cnf_algorithm Environment Variable|

This variable defines the algorithm used for conversion fiRBC to CNF format in
which a problem is supplied to a SAT solver. The default vakleridan ' refers to
[She04] algorithm which allows to obtain a more compact Chiffiulas. The other value
‘tseitin ' refers to a standard Tseiting transformation algorithm.

checkltlspec_bmc - Checks the given LTL specification, or all LT Command
specifications if no formula is given. Checking parameteesthe
maximum length and the loopback value

check _ltlspec _bmc [-h] | [-n idx | -p "formula [IN

context]" | -P "name"] [-k max _length] [-I loopback] [-0

filename]

This command generates one or more problems, and calls 3¥ar $or each one. Each
problem is related to a specific problem bound, which in@edom zero () to the given
maximum problem length. Heraax_length is the bound of the problem that system is
going to generate and solve. In this context the maximumlenotibound is represented
by the-k command parameter, or by its default value stored in the@mvient variable
bmc_length . The single generated problem also depends ofottygback parameter
you can explicitly specify by the option, or by its default value stored in the environ-
ment variabldomc_loopback

The property to be checked may be specified usingrth@x or the-p "formula"
options. If you need to generate a DIMACS dump file of all gatet problems, you must
use the optiono “filename™

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k maxlength maxlengthis the maximum problem bound to be checked.

Only natural numbers are valid values for this option. If no
value is given the environment varialbenclengthis con-
sidered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(*+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative taaxlength Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

75

-0 filename

e the symbol X', which means “no loopback”.
e the symbol *’, which means “all possible loopbacks from

zero tolength-T .
filenames the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
o @@: the ‘@’ character.

checkltlspec_bmc_onepb- Checks the given LTL specification, Command
all LTL specifications if no formula is given. Checking pasiars
are the single problem bound and the loopback value

check _ltlspec
[IN context] | -P "name"] [-k length] [-I loopback] [-0
filename]

As commandcheck _ltlspec

_bmconepb [-h] | [-n idx | -p "formula"

_bmc but it produces only one single problem with

fixed bound and loopback values, with no iteration of the fmobbound from zero to
max_length.

Command Options:

-Nn

-p "formula [IN

index

context]"

-P name

-k

length

loopback

indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of indexvalue is checked out by the system.

Checks theformula specified on the command-line.
context is the module instance name which the variables
informula must be evaluated in.

Checks the LTL property namedame in the property
database.

lengthis the problem bound used when generating the sin-
gle problem. Only natural numbers are valid values for
this option. If no value is given the environment variable

bmc_length is considered instead.

Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
('+') can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative kength Any invalid
combination of length and loopback will be skipped during
the generation/solving process.

76

e the symbol X', which means “no loopback” .
e the symbol *’, which means “all possible loopback from
zero tolength-1.
-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-
erty database.

e @@: the '@’ character.

genltlspec.bmc - Dumps into one or more dimacs files the giv Command
LTL specification, or all LTL specifications if no formula isen.

Generation and dumping parameters are the maximum bound

the loopback value

gen_tlspec _bmc [-h] | [-n idx | -p "formula" [IN context]
| -P "name"] [-k max _length] [-| loopback] [-0 filename]

This command generates one or more problems, and dumps esgbrp into a dimacs
file. Each problem is related to a specific problem bound, whiicreases from zero (0) to
the given maximum problem bound. In this short descriptémmgth is the bound of the
problem that system is going to dump out.

In this context the maximum problem bound is representedhéyiiaxlengthparameter,
or by its default value stored in the environment varidiiec_length

Each dumped problem also depends on the loopback you canitixsipecify by the-|
option, or by its default value stored in the environmentalae bmc_loopback .

The property to be checked may be specified usingrth&x or the-p "formula "
options.

You may specify dimacs file name by using the optionfilename , otherwise the
default value stored in the environment variablac_dimacs _flename will be con-
sidered.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of index value is checked out by the system.

-p “formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k maxlength maxlengthis the maximum problem bound used when in-

creasing problem bound starting from zero. Only natural
numbers are valid values for this option. If no value is
given the environment variablemclengthvalue is consid-
ered instead.

77

-I loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
('+') can be also used as prefix of the number. Any in-
valid combination of bound and loopback will be skipped

during the generation and dumping process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative meaxlength Any in-
valid combination of bound and loopback will be skipped

during the generation process.

e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from
zero tolength-T.

-0 filename filenames the name of dumped dimacs files. If this options
is not specified, variablbmcdimacsfilenamewill be con-
sidered. The file name string may contain special symbols
which will be macro-expanded to form the real file name.
Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value .

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the ‘@’ character.

genltlspec_bmc_onepb- Dumps into one dimacs file the proble Command
generated for the given LTL specification, or for all LTL dfiec

cations if no formula is explicitly given. Generation andhtjing

parameters are the problem bound and the loopback value

gen_ltlspec _bmconepb [-h] | [-n idx | -p "formula”

[IN context] | -P "name"] [-k length] [-I loopback] [-0

filename]

Asthegen _ltlspec _bmccommand, but it generates and dumps only one problem given
its bound and loopback.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of indexvalue is checked out by the system.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k length lengthis the single problem bound used to generate and

dump it. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmc_length is considered instead.

78

-I loopback Theloopbackvalue may be:

e a natural number in (®ength-1). A positive sign ('+’) can
be also used as prefix of the number. Any invalid combi-
nation of length and loopback will be skipped during the
generation and dumping process.

e negative number in (-1Jength. Any invalid combination
of length and loopback will be skipped during the genera-
tion process.

e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from
zero tolength-2.

-0 filename filenamés the name of the dumped dimacs file. If this op-

tions is not specified, variablemc_dimacs _filename

will be considered. The file name string may contain spe-

cial symbols which will be macro-expanded to form the real

file name. Possible symbols are:

e @F: model name with path part

e @f: model name without path part

e @k: current problem bound

e @I: current loopback value

e @n: index of the currently processed formula in the prop-
erty database

e @@: the '@’ character

checkltlspec_bmc_inc - Checks the given LTL specification, or ¢ Command
LTL specifications if no formula is given, using an increraéat-

gorithm. Checking parameters are the maximum length and

loopback value

check _ltlspec _bmc.inc [-h] | [-n idx | -p "formula [IN

context]" | -P "name"] [-k max _length] [-I loopback]

For each problem this command incrementally generates setisfiability subproblems
and calls the SAT solver on each one of them. The incremelgatitnm exploits the
fact that subproblems have common subparts, so informatiteined during a previous
call to the SAT solver can be used in the consecutive onesicalbg this command does
the same thing asheck _ltispec _bmc (see the description on page 75) but usually
runs considerably quicker. A SAT solver with an incrementaéérface is required by
this command, therefore if no such SAT solver is providechttiés command will be
unavailable.

79

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k maxlength maxlength is the maximum problem bound must be

reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmclengthis considered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(*+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative haaxlength Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from
zero tolength-T .

checkltlspec_sbmc - Checks the given LTL specification, or ¢ Command
LTL specifications if no formula is given. Checking paranmsetze
the maximum length and the loopback value

check _ltlspec _sbmc [-h] | [-n idx | -p "formula [IN

context]" | -P "name"] [-k max _length] [-I loopback] [-0

filename]

This command generates one or more problems, and calls 3¥dr $or each one. The
BMC encoding used is the one by of Latvala, Biere, Heljankd dunttila as described

in [LBHJO5]. Each problem is related to a specific problemrzhwhich increases from
zero (0) to the given maximum problem length. Hereaxlength is the bound of the
problem that system is going to generate and solve. In thitegbthe maximum problem
bound is represented by the command parameter, or by its default value stored in the
environment variablémc_length . The single generated problem also depends on the
loopback parameter you can explicitly specify by tHe option, or by its default value
stored in the environment varialidenc_loopback .

The property to be checked may be specified usingrthé@x or the-p "formula"

options. If you need to generate a DIMACS dump file of all gatet problems, you must
use the optiono "filename"

80

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k maxlength maxlengthis the maximum problem bound to be checked.

Only natural numbers are valid values for this option. If no
value is given the environment varialbenclengthis con-
sidered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(*+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative haaxlength Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.
e the symbol *’, which means “all possible loopbacks from
zero tolength-T .
-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
o @@: the ‘@’ character.

checkltlspec_sbmcinc - Checks the given LTL specification, « Command
all LTL specifications if no formula is given. Checking paeiers
are the maximum length and the loopback value

check _ltlspec _sbmc.inc [-h] | [-n idx | -p "formula [IN

context]" | -P "name"] [-k max _length] [-0 filename] [-N]

[-c]

This command generates one or more problems, and calls $Adr $or each one. The In-
cremental BMC encoding used is the one by of Heljanko, Jaratid Latvala, as described
in [KHLO5]. For each problem this command incrementally gigrtes many satisfiability
subproblems and calls the SAT solver on each one of them. fathem is related to
a specific problem bound, which increases from zéj)aq the given maximum problem
length. Heremax.ength is the bound of the problem that system is going to generate
and solve. In this context the maximum problem bound is sepred by thek command
parameter, or by its default value stored in the environmarnablebmc_length

The property to be checked may be specified usingrth&x , the-p "formula” or
the-P "name" options.

81

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the LTL property namedame in the property
database.

-k maxlength maxlengthis the maximum problem bound to be checked.

Only natural numbers are valid values for this option. If no
value is given the environment varialbenclengthis con-
sidered instead.

-N Does not perform virtual unrolling.
-C Performs completeness check.
genltlspec_sbmc- Dumps into one or more dimacs files the giv Command

LTL specification, or all LTL specifications if no formula iwen.
Generation and dumping parameters are the maximum bound
the loopback values.

gen_tlspec _sbmc [-h] | [-n idx | -p "formula [IN

context]" | -P "name"] [-k max _length] [-I loopback] [-0

filename]

This command generates one or more problems, and dumps esitbrp into a dimacs
file. The BMC encoding used is the one by of Latvala, Bierejatédo and Junttila as de-
scribed in [LBHJO05]. Each problem is related to a specifibpgm bound, which increases
from zero () to the given maximum problem length. Herex length is the bound of
the problem that system is going to generate and dump. leohiext the maximum prob-
lem bound is represented by tHe command parameter, or by its default value stored in
the environment variablbmc_length . The single generated problem also depends on
the loopback parameter you can explicitly specify by the option, or by its default
value stored in the environment varialbienc_loopback

The property to be used for tghe problem dumping may be spdaifsing then idx

or the-p "formula” options. You may specify dimacs file nhame by using the op-
tion -o "filename" , otherwise the default value stored in the environmentatéei
bmc_dimacs _filename will be considered.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Dumps theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P "name" Checks the LTL property namathme

-k maxlength maxlengthis the maximum problem bound to be generated.

Only natural numbers are valid values for this option. If no
value is given the environment varialbenclengthis con-
sidered instead.

82

-I loopback Theloopbackvalue may be:
e a natural number in (Omaxlength-1). A positive sign

(*+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative meaxlength Any in-

valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from
zero tolength-1 .

-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form

the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.
e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the ‘@’ character.

bmc_length Environment Variable|

Sets the generated problem bound. Possible values are amglnaumber, but must be
compatible with the current value held by the variahecloopback The default value is
10.

bmc_loopback Environment Variable|

Sets the generated problem loop. Possible values are:
e Any natural number, but less than the current value of theabrbmclength In
this case the loop point is absolute.

e Any negative number, but greater than or equabtoclength In this case specified
loop is the loop length.

e The symbol X', which means “no loopback”.
e The symbol *’, which means “any possible loopbacks”.

The default value is.

bmc_optimized_tableau Environment Variable|

Uses depthl optimization for LTL Tableau construction in BM

bmec_force_pltl _tableau Environment Variable|

Forces to use PLTL instead of LTL for BMC tableau construtctio

bmc_dimacs filename Environment Variable|

This is the default file name used when generating DIMACS leraldumps. This variable
may be taken into account by all commands which belong to émdttspecbmc family.
DIMACS file name can contain special symbols which will be axged to represent the
actual file name. Possible symbols are:

83

e @F The currently loaded model name with full path.
e @f The currently loaded model name without path part.

@n The numerical index of the currently processed formulaéyttoperty database.

@k The currently generated problem length.
e @I The currently generated problem loopback value.
e @@The ‘@’ character.

The default value is@fk@kI@| .n@n".

bmc_sbme.gf_fg_opt Environment Variable|

Controls whether the system exploits an optimization whenfigpming SBMC on formu-
lae in the formF'Gp or GFp. The default value i& (active).

checkinvar_bmc - Generates and solves the given invariant, or . Command
invariants if no formula is given

check _invar _bmc [-h | -n idx | -p "formula" [IN context] |

-P "name"] [-a alg] [-0 filename]

In Bounded Model Checking, invariants are proved usingdtida. For this, satisfiability
problems for the base and induction step are generated add adbver is invoked on
each of them. At the moment, two algorithms can be used toepimxariants. In one
algorithm, which we call “classic”, the base and inductiteps are built on one state and
one transition, respectively. Another algorithm, which g&l “een-sorensson” [ES04],
can build the base and induction steps on many states argitivas. As a result, the
second algorithm is more powerful.

Also, notice that during checking of invariants all the fe&ss conditions associated with
the model are ignored.

Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p “formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the INVAR property nameatame in the property
database.

-k maxlength maxlength is the maximum problem bound that can be

reached. Only natural numbers are valid values for this op-
tion. Use this option only if the “een-sorensson” algorithm

is selected. If no value is given the environment variable
bmclengthis considered instead.

84

-a alg alg specifies the algorithm. The value candiassic or
een-sorensson . If no value is given the environment
variablebmcinvar_alg is considered instead.

-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part
e @f: model name without path part
e @n: index of the currently processed formula in the prop-

erties database
e @@: the ‘@’ character

gen.invar_bmc - Generates the given invariant, or all invariants Command
no formula is given

gen_invar _bmc [-h | -n idx | -p "formula [IN context]" | -P

"name"] [-0 filename]

At the moment, the invariants are generated using “clasdgdrithm only (see the de-

scription ofcheck _invar _bmcon page 84).

Command Options:

-n index indexis the numeric index of a valid INVAR specification

formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-P name Checks the INVAR property nametame in the property
database.

-0 filename filenamés the name of the dumped dimacs file. If you do

not use this option the dimacs file name is taken from the
environment variablemc_invar _dimacs _filename

File nhame may contain special symbols which will be
macro-expanded to form the real dimacs file name. Possi-
ble symbols are:

e @F: model name with path part
e @f: model name without path part
e @n: index of the currently processed formula in the prop-

erties database
e @@: the '@’ character

checkinvar_bmc_inc - Generates and solves the given invarial Command
or all invariants if no formula is given, using incrementdge-
rithms

check _invar _bmc.inc [-h] | [-n idx | -p "formula" [IN
context] | -P "name"]] [-a algorithm]

85

This command does the same thingchagck _invar _bmc (see the description on page
84) but uses an incremental algorithm and therefore uswailg considerably quicker.

The incremental algorithms exploit the fact that satisfigbproblems generated for a
particular invariant have common subparts, so informatiotained during solving of one

problem can be used in solving another one. A SAT solver witinaremental interface

is required by this command. If no such SAT solver is provitleh this command will be

unavailable.

There are two incremental algorithms which can be used: 'Darad “ZigZag”. Both
algorithms are equally powerful, but may show differenfpenance depending on a SAT
solver used and an invariant being proved. At the moment;D@l” algorithm cannot
be used if there are input variables in a given model. Forteafdil information about
algorithms, consider [ES04].

Also, notice that during checking of invariants all the fess conditions associated with
the model are ignored.

Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p “formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
informula must be evaluated in.

-P "name" Checks the INVARSPEC property namedme

-k maxlength maxlength is the maximum problem bound that can be

reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmclengthis considered instead.

-a alg alg specifies the algorithm to use. The value cardbal
or zigzag . If no value is given the environment variable
bmcinc_invar_alg is considered instead.

bmc_invar _alg Environment Variable|

Sets the default algorithm used by the commelnelck _invar _bmc. Possible values are
classic andeen-sorensson . The default value islassic

bmc_inc_invar _alg Environment Variable|

Sets the default algorithm used by the commaeaheck _invar _bmc.inc . Possible val-
ues aredual andzigzag . The default value igual .

bmec_invar _dimacsfilename Environment Variable|

This is the default file name used when generating DIMACSrinkanps. This variable
may be taken into account by the commageh _invar _bmc. DIMACS file name can
contain special symbols which will be expanded to repretfenactual file name. Possible
symbols are:

e @F The currently loaded model name with full path.

e @f The currently loaded model name without path part.

e @n The numerical index of the currently processed formula ie fmoperties
database.

@@ The ‘@’ character.

86

The default value is@f.invar _n@n".

sat_solver Environment Variable|

The SAT solver’s name actually to be used. Default SAT sav&IM. Depending on the
NUSMYV configuration, also the Zchaff and MiniSat SAT solvers be available or not.
Notice that Zchaff and MiniSat are for non-commercial psgmonly.

bmc_pick _state- Picks a state from the set of initial states Command |

bmc_pick _state [-h] [-v] [-Cc "constraint" | -s trace.state]

Chooses an element from the set of initial states, and makes ¢urrent state (replacing
the old one). The chosen state is stored as the rst state wftaawe ready to be lengthened
by steps states by thenc_simulate command or thbmc.inc _simulate command.

Command Options:

-v Verbosely prints the generated trace
-C constraint Set a constraint to narrow initial states.
-s state Picks state from trace.state label.
bmc_simulate - Generates a trace of the model from O (zero) to Command|

bmc_simulate [-h] [-k] [-p | -V]

bmc_simulate does not require a specification to build the problem, bexanty the
model is used to build it. The problem length is representeitié-k command parameter,
or by its default value stored in the environment varidiiec_length

Command Options:

-k length lengthis the length of the generated simulation.

-p Prints the generated trace (only changed variables).

-v Prints the generated trace (all variables).
bmc_inc_simulate - Generates a trace of the model from O (zero) Command

k

bmc.inc _simulate [-h] [-k] [-p | -v] [-c "constr"]

Performs incremental simulation of the modeimc_inc _simulate does not require a
specification to build the problem, because only the modedési to build it. The problem
length is represented by thk command parameter, or by its default value stored in the
environment variablemc_length

Command Options:

-k length Specifies the simulation length to be used when generating
the simulated problem. Generates a k-steps simulation us-
ing Bounded Model Checking. You can speciky also by
setting the variablemc_length.

87

-p Prints the generated trace (only changed variables).
-V Prints the generated trace (all variables).

-c constr Restricts the simulation to transitions satisfying the-con
straint. Theconstr can also contain the “next” operator.

bmc_simulate_check feasible constraints - Checks feasability for Command
the given constraints

bmc_simulate _check _feasible _constraints [-h] [-q] [-C
"constr"]

Checks if the given constraints are feasible for BMC simatat
Command Options:

-q Prints the output in compact form.

-C constr Specify one constraint whose feasability has to be checked
(can be used multiple times, order is important to read the
result)

3.7 Commands for checking PSL specifications

The following command allow for model checking of PSL spesifions.

checkpslspec- Performs PSL model checking Command|

check _psispec [-h] [-m | -0 output-file] [-n number | -p

"psl-expr [IN context]" | -P "name"] [-b [-] [-0] [-1]

[-k

bmc_lenght] [-| loopback]]

Depending on the characteristics of the PSL property andverptions, the commands
applies CTL-based model checking, or LTL-based, posshmiynded model checking.

A psl-expr to be checked can be specified at command line using oggiolterna-
tively, option-n can be used for checking a particular formula in the propéatyabase.
If neither-n nor-p are used, all the PSLSPEC formulas in the database are chdtke
option-b is used, LTL bounded model checking is applied, otherwis#limsed model
checking is applied. For LTL bounded model checking, ogtidn and-I can be used to
define the maximum problem bound, and the value of the lodpleathe single generated
problems respectively; their values can be stored in the@mwent variablebmclenght
andbmcloopback Single problems can be generated by using option By using op-
tion-i the incremental version of bounded model checking is aetilzaBounded model
checking problems can be generated and dumped in a file by aption-g .

Command Options:

-m Pipes the output generated by the command in process-
ing PSLSPEG to the program specified by tHeAGER
shell variable if defined, else through the UNIX command
“more”.

88

-0 output-file

-p "psl-expr [IN
context]"

-n number
-P name

-b

-9

-k bmclength

-l loopback

Writes the output generated by the command in processing
PSLSPEGs to the fileoutput-file

A PSL formula to be checkedcontext is the module
instance name which the variablesgsl-expr must be
evaluated in.

Checks the PSL property with indesumber in the prop-
erty database.

Checks the PSL property namethme in the property
database.

Applies SAT-based bounded model checking. The SAT
solver to be used will be chosen according to the current
value of the system variabgat _solver

Applies incremental SAT-bounded model checking if avail-
able, i.e. if an incremental SAT solver has been linked to
NuSMV. This option can be used only in combination with

the option-b .

Dumps DIMACS version of bounded model checking prob-
lem into a file whose name depends on the system variable
bmc_dimacs _flename . This feature is not allowed in
combination of the optioA .

Generates a single bounded model checking problem with
fixed bound and loopback values, it does not iterate incre-
menting the value of the problem bound.

bmdlengthis the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment variatdenclengthis con-
sidered instead.

Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(*+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative meaxlength Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from
zero tolength-1' If no value is given the environment vari-
ablebmcloopbackis considered instead..

3.8 Simulation Commands

In this section we describe the commands that allow to siradaNUSMV specification. See
also the section Section 3.10 [Traces], page 93 that descifiie commands available for manip-

ulating traces.

pick_state- Picks a state from the set of initial states Command |

pick _state [-h] [-v] [-r | -i [-a@]] [-c "constraints"]

89

Chooses an element from the set of initial states, and makés current state
(replacing the old one). The chosen state is stored as thetfite of a new trace ready to
be lengthened bgteps states by thesimulate command. The state can be chosen
according to different policies which can be specified vianomand line options. By
default the state is chosen in a deterministic way.

Command Options:

-v Verbosely prints out chosen state (all state and frozen vari
ables, otherwise it prints out only the laliel of the state
chosen, wher¢ is the number of the new trace, that is the
number of traces so far generated plus one).

-r Randomly picks a state from the set of initial states.

i Enables the user to interactively pick up an initial statee T
user is requested to choose a state from a list of possible
items (every item in the list doesn’t show frozen and state
variables unchanged with respect to a previous item). If the
number of possible states is too high, then the user has to
specify some further constraints as “simple expression”.

-a Displays all state and frozen variables (changed and un-
changed with respect to a previous item) in an interactive
picking. This option works only if thei options has been
specified.

-c "constraints" Usesconstraints to restrict the set of initial states in
which the state has to be pickedonstraints must be
enclosed between double quotes .

simulate - Performs a simulation from the current selected state Command |

simulate [-h] [-p | -v] [r | -i [-a]] [-c "constraints"]

steps

Generates a sequence of at mettps states (representing a possible execution of
the model), starting from theurrent state . The current state must be set via the
pick _state orgoto _state commands.

It is possible to run the simulation in three ways (accordioglifferent command line
policies): deterministic (the default mode), random artdriactive.

The resulting sequence is stored in a trace indexed with @gén number taking into
account the total number of traces stored in the system.eTikaa different behavior in
the way traces are built, according to howrrent states set: current stateis always put

at the beginning of a new trace (so it will contain at most stefd states) except when it
is the last state of an existent old trace. In this case thérate is lengthened by at most
steps states.

Command Options:

-p Prints current generated trace (only those variables whose
value changed from the previous state).

-v Verbosely prints current generated trace (changed and un-
changed state and frozen variables).

90

-r Picks a state from a set of possible future states in a random
way.

-i Enables the user to interactively choose every state of the
trace, step by step. If the number of possible states is too
high, then the user has to specify some constraints as simple
expression. These constraints are used only for a single sim
ulation step and artorgottenin the following ones. They
are to be intended in an opposite way with respect to those
constraints eventually entered with thiek _state com-
mand, or during an interactive simulation session (when the
number of future states to be displayed is too high), that are
local only to a single step of the simulation and &egotten
in the next one.

To improve readability of the list of the states which theruse
must pick one from, each state is presented in terms of dif-
ference with respect of the previous one.

-a Displays all the state and frozen variables (changed and un-
changed) during every step of an interactive session. This
option works only if thei option has been specified.

-c "constraints" Performs a simulation in which computation is restricted
to states satisfying thosmnstraints . The desired se-
quence of states could not exist if such constraints were too
strong or it may happen that at some point of the simulation
a future state satisfying those constraints doesn’t exist:
that case a trace with a number of states less shaps
trace is obtained. Noteconstraints must be enclosed
between double quotés” .

steps Maximum length of the path according to the constraints.
The length of a trace could contain less tisdeps states:
this is the case in which simulation stops in an intermediate
step because it may not exist any future state satisfyirggtho
constraints.

shown states Environment Variable|

Controls the maximum number of states tail will be shownmlyen interactive simulation
session. Possible values are integers filota 100. The default value i25.

traces hiding_prefix Environment Variable|

see section 3.10.2 for a detailed description.

traces.regexp Environment Variable|

see section 3.10.2 for a detailed description.

3.9 Execution Commands

In this section we describe the commands that allow to perfibace re-execution on a given
model. See also the section Section 3.10 [Traces], page®8ehcribes the commands available
for manipulating traces.

91

executetraces- Executes complete traces on the model FSM Command|

execute _traces [-h] [-v] [-m | -0 output-file] -e engine [-a

| trace _number]

Executes traces stored in the Trace Manager. If no traceeisfial, last registered trace
is executed. Traces must be complete in order to perfornuérec

Command Options:

-v Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the

PAGERshell variable if defined, else through the UNIX
command “more”.

-0 output-file Writes the output generated by the command to
output-file

-e engine Selects an engine for trace re-execution. It must be one of
‘bdd’, ’sat’ or 'smt’.

trace _number The (ordinal) identifier number of the trace to be printed.

This must be the last argument of the command. Omitting
the trace number causes the most recently generated trace to
be executed.

executepartial _traces- Executes partial traces on the model FS Command |

execute _partial _traces [-h] [-v] [-r] [-m | -0 output-file]

-e engine [-a | trace _number]

Executes traces stored in the Trace Manager. If no traceeisfsl, last registered trace
is executed. Traces are not required to be complete. Uparesfut termination, a new
complete trace is registered in the Trace Manager.

Command Options:

-V Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-r Performs restart on complete states. When a complete state

(i.e. a state which is non-ambiguosly determined by a com-
plete assignment to state variables) is encountered, the re
execution algorithm is re-initialized, thus reducing camp
tation time.

-m Pipes the output through the program specified by the
PAGERshell variable if defined, else through the UNIX
command “more”.

-0 output-file Writes the output generated by the command to
output-file
-e engine Selects an engine for trace re-execution. It must be one of

‘bdd’, 'sat’ or 'smt’.

92

trace _number The (ordinal) identifier number of the trace to be printed.
This must be the last argument of the command. Omitting
the trace number causes the most recently generated trace to
be executed.

3.10 Traces

A trace consists of an initial state, optionally followed hysequence of states-inputs pairs
corresponding to a possible execution of the model. Apaoinfthe initial state, each pair
contains the inputs that caused the transition to the nete,sé&d the new state itself. The
initial state has no such input values defined as it does meradeon the values of any of the
inputs. The values of any constants declare@EFINE sections are also part of a trace. If
the value of a constant depends only on state and frozerblesithen it will be treated as if it
is a state variable too. If it depends only on input varialhes it will be treated as if it is an
input variable. If however, a constant depends upon bothtiapd state/frozen variables and/or
NEXTed state variables, then it gets displayed in a separatebicatorial” section. Since the
values of any such constants depend on one or more inputsjtinestate does not contain this
section either.

Traces are created byd$MV when a formula is found to be false; they are also gendrate
as a result of a simulation (Section 3.8 [Simulation Comnsingage 89) or partial trace
re-execution (Section 3.9 [Execution Commands], page Bagh trace has a number, and the
states-inputs pairs are numbered within the trace. Tndoas states/inputs.1, n.2, n.3, "..”
wheren.1represents the initial state.

When Cone of Influence (COI) is enabled when generating & {f@g. when performing
model checking), the generated trace will contain only #ievant symbols (variables and DE-
FINEs) which are in the COI projected by the variables odogrin the property which is being
checked. The symbols which are left out of the COI, will be vistble in the generated trace,
as they do not occur in the problem encoded in the solvingnengNotice that when COl is
enabled, the generated trace may or may not be a valid ceexdaenple trace for the original
model.

3.10.1 Inspecting Traces

The trace inspection commands ot MV allow for navigation along the labelled states-inputs
pairs of the traces produced. During the navigation, treeeirrent stateand thecurrent trace
is the trace theurrent statebelongs to. The commands are the following:

goto_state- Goes to a given state of a trace Command |

goto _state [-h] state _label

Makesstate _label thecurrent state This command is used to navigate along traces
produced by NNSMV. During the navigation, there iscairrent stateand thecurrent trace
is the trace theurrent statebelongs to.

93

state _label isinthe formtrace.statevhere

trace is the index of the trace which the state has to be taken from.

state is the index of the state within the given tracestiéte is a negative number, then
the state index is intended to be relative to the length ofthen trace. For example
2.-1 means the last state of the traze?.-2 is the state before the last state, etc.

print _current _state - Prints out the current state Command|

print _current _state [-h] [-V]
Prints the name of theurrent statef defined.
Command Options:

-V Prints the value of all the state and frozen variables of the
current state

3.10.2 Displaying Traces

NuSMYV comes with three trace plugins (see Section 3.11 [Tr&wgifs], page 97) which can
be used to display traces in the system. Once a trace has éeerated by NSMV it is printed
to stdout using the trace explanation plugin which has been set asuttient default. The
commandshow_traces (see Section 3.8 [Simulation Commands], page 89) can theisdx
to print out one or more traces using a different trace pluggwell as allowing for output to a
file.

Generation and displaying of traces can be enabled/dable setting variable
counter _examples . Some filtering of symbols that are presented when showaes can
be controlled by variablesaces _hiding _prefix andtraces _regexp .

counter_examples Environment Variable|
This determines whether traces are generated when neegled|s® command line option
-dex .

traces hiding_prefix Environment Variable|

Symbols names that match this string prefix will be not pdraat when showing a trace.
This variable may be used to avoid displaying symbols thaeapected to be not visible
to the user. For example, this variable is exploited whenpinghnbooleanized models,
as N\USMV may introduce hidden placeholding symbolsESFINES that do not carry
any useful information for the user, and that would makeetsdtardly readable if printed.
Default is_-

traces.regexp Environment Variable|

Only symbols whose names match this regular expressiorbe/jifirinted out when show-
ing a trace. This option might be used by users that are stegtein showing only
some symbol names. Names are first filtered out by applyinghirag of the dual vari-
abletraces _hiding _prefix , and then filtered names are checked against content of
traces _regexp . Given regular expression can be a Posix Basic Regular Esjore
Matching is carried out on symbol names without any contgxntformation, like module
hierarchy. For example im1.m2.name only nameis checked for filtering.

Notice that depending on the underlaying platform and dpegasystem this variable
might be not available.

94

show.definesin_traces Environment Variable|

Controls whether defines should be printed as part of a trade skipped. Skipping
printing of the defines can help in reducing time and memoagesequired to build very
big traces.

traces. show.defineswith _next Environment Variable|

Controls whether defines containing next operators shaeilprinted as part of a trace or
be skipped.

3.10.3 Trace Plugin Commands

The following commands relate to the plugins which are add in NUSMV.

show plugins - Shows the available trace explanation plugins Command |

show_plugins [-h] [-n plugin-no | -&]
Command Options:

-n plugin-no Shows the plugin with the index number equal to
plugin-no
-a Shows all the available plugins.

Shows the available plugins that can be used to display a twhich has been generated
by NUSMV, or that has been loaded with tread _trace command. The plugin that is
used to read in a trace is also shown. The current defaulipisignarked with {D] ”.

All the available plugins are displayed by default if no coermd options are given.

default_trace_plugin Environment Variable|

This determines which trace plugin will be used by defaulewkraces that are generated
by NUSMYV are to be shown. The values that this variable can takerdepn which trace
plugins are installed. Use the commasitbw _plugins to see which ones are available.
The default value i§.

show.traces- Shows the traces generated in a NuSMV session Command |

show_traces [-h] [-v] [-t] [-A] [-m | -0 output-file]
[-p plugin-no] [-a | trace _number[.from _state[:[to _state]]]
Command Options:

-v Verbosely prints traces content (all state and frozen vari-
ables, otherwise it prints out only those variables thaehav
changed their value from previous state). This option only
applies when the Basic Trace Explainer plugin is used to
display the trace.

95

-0 output-file
-p plugin-no
trace _number

from _step

to _step

Prints only the total number of currently stored traces.
Prints all the currently stored traces.

Pipes the output through the program specified by the
PAGERshell variable if defined, else through the UNIX
command “more”.

Writes the output generated by the command to
output-file
Uses the specified trace plugin to display the trace.

The (ordinal) identifier number of the trace to be printed.
Omitting the trace number causes the most recently gener-
ated trace to be printed.

The number of the first step of the trace to be printed. Nega-
tive numbers can be used to denote right-to-left indexes fro
the last step.

The number of the trace to be printed. Negative numbers
can be used to denote right-to-left indexes from the lagt ste
Omitting this parameter causes the entire suffix of the trace
to be printed.

Prints the trace(s) using a rewriting mapping for all syrsbol
The rewriting is the same used write _flat _model

with option-A .

Shows the traces currently stored in system memory, if aydéSault it shows the last
generated trace, if any. Optional trace number can be felioy two indexes (fronstate,
to_state), denoting a trace “slice”. Thus, itis possible tasegprintout only of an arbitrary
fragment of the trace (this can be helpful when inspecting b traces).

If the XML Format Output plugin is being used to save genefataces to a file with the
intent of reading them back in again at a later date, then @mytrace should be saved per
file. This is because the trace reader does not currentlyosuppltiple traces in one file.

read_trace - Loads a previously saved trace Command |

read _trace [-h | [-i filename] [-u] [-s] filename]

Command Options:
-i filename

Reads in a trace from the specified file. Note that the file
must only contain one traceThis option has been depre-
cated Use the explicit filename argument instead.

Turns “undefined symbol” error into a warning. The loader
will ignore assignments to undefined symbols.

Turns “wrong section” error into a warning. The loader

will accept symbol assignment even if they are in a different
section than expected. Assignments will be silently moved
to appropriate section, i.e. misplaced assignments te stat
symbols will be moved back to previous state section and
assignments to input/combinatorial symbols will be moved
forward to successive input/combinatorial section. Such a
way if a variable in a model was input and became state or
vice versa the existing traces still can be read and executed

96

Loads a trace which has been previously output to a file wighXML Format Output
plugin. The model from which the trace was originally getetdanust be loaded and built
using the commandgo” first.

Please note that this command is only available on systeshbalve the Expat XML parser
library installed.

3.11 Trace Plugins

NuSMYV comes with three plugins which can be used to displayeettiaat has been generated:

Basic Trace Explainer
States/Variables Table
XML Format Printer

There is also an xml loader which can read in any trace whishblean output to a file by
the XML Format Printer. Note however that this loader is omilable on systems that have
the Expat XML parser library installed.

Once a trace has been generated it is outpustdout using the currently selected plu-
gin. The commandhow_traces can be used to output any previuosly generated, or loaded,
trace to a specific file.

3.11.1 Basic Trace Explainer

This plugin prints out each state (the current values of Hréables) in the trace, one after the
other. The initial state contains all the state and frozerakées and their initial values. States
are numbered in the following fashion:

trace _number.state _number

There is the option of printing out the value of every vargali each state, or just those
which have changed from the previous one. The one that iseeete chosen by selecting the
appropriate trace plugin. The values of any constants witégiend on both input and state or
frozen variables are printed next. It then prints the setpftits which cause the transition to a
new state (if the model contains inputs), before actualigtimg the new state itself. The set of
inputs and the subsequent state have the same number se$oaitnem.

In the case of a looping trace, if the next state to be prirgeldeé same as the last state in the
trace, a line is printed stating that this is the point wharelbop begins.

With the exception of the initial state, for which no inputwes are printed, the output syntax
for each state is as follows:

-> |nput: TRACE_NO.STATE_NO <-
/= for each input var (being printed), i */
INPUT_VARI = VALUE

-> State: TRACE_NO.STATE_NO <-

/= for each state and frozen var (being printed), j: */
STATE_VARj = VALUE
/= for each combinatorial constant (being printed), k: */

CONSTANTK = VALUE

where INPUT_VAR STATEVAR and CONSTANThave the relevant module names
prepended to them (seperated by a period) with the exceptitire module fnain ” .

The version of this plugin which only prints out those valéshwhose values have changed
is the initial default plugin used by BISMV.

97

3.11.2 States/Variables Table

This trace plugin prints out the trace as a table, either thithstates on each row, or in each
column. The entries along the state axis are:

S1 C212 S2 ... Cn In Sn

whereS1 is the initial state, and; gives the values of the input variables which caused the
transition from stateS;_; to stateS;. C; gives the values of any combinatorial constants, where
the value depends on the values of the state or frozen vasiablstateS;_; and the values of
input variables in stat§;.

The variables in the model are placed along the other axidy the values of state and
frozen variables are displayed in the State row/columny timt values of input variables are
displayed in the Input row/column and only the values of coratorial constants are displayed
in the Constants row/column. All remaining cells havédisplayed.

3.11.3 XML Format Printer

This plugin prints out the trace either gidout or to a specified file using the command
show_traces . If traces are to be output to a file with the intention of theeing loaded
again at a later date, then each trace must be saved in ateefileraThis is because the XML
Reader plugin does not currently support multiple tracesilee

The format of a dumped XML trace file is as follows:

<?XML_VERSION_STRING?>
<counter-example type=TRACE_TYPE desc=TRACE_DESC>

/ = for each state, i: x [
<node>
<state id=i>
/= for each state and frozen var, j: x [

<value variable=j>VALUE</value>

</state>
<combinatorial id=i+1>

/ = for each combinatorial constant, k: * [
<value variable=k>VALUE</value>

</combinatorial>
<input id=i+1>

/= for each input var, I: */
<value variable=I>VALUE</value>

</input>
</node>

</counter-example>
Note that for the last state in the trace, there is no inpuieedn the node tags. This is
because the inputs section gives the new input values whigbecthe transition to the next state

in the trace. There is also no combinatorial section as thedds on the values of the inputs
and are therefore undefined when there are no inputs.

98

3.11.4 XML Format Reader

This plugin makes use of the Expat XML parser library and @k £an only be used on systems
where this library is available. Previously generateddsdor a given model can be loaded using
this plugin provided that the original model filbas been loaded, and built using the command
go.

When a trace is loaded, it is given the smallest availableetraimber to identify it. It can
then be manipulated in the same way as any generated trace.

3.12 Interface to the DD Package

NuUSMV uses the state of the art BDD package CUDD [Som98]. Cbatter the BDD package
can be very important to tune the performance of the systepadticular, the order of variables
is critical to control the memory and the time required byratiens over BDDs. Reordering
methods can be activated to determine better variable radeorder to reduce the size of the
existing BDDs.

Reordering of the variables can be triggered in two ways: by tiser, or by the
BDD package. In the first way, reordering is triggered by thteractive shell command
dynamic _var _ordering with the-f option.

Reordering is triggered by the BDD package when the numberodés reaches a given
threshold. The threshold is initialized and automaticalijusted after each reordering by the
package. This s called dynamic reordering, and can be edabldisabled by the user. Dynamic
reordering is enabled with the shell commatyhamic _var _ordering with the option-e ,
and disabled with thed option. Variabledynamic _reorder can also be used to determine
whether dynamic reordering is active. If dynamic reordgimenabled it may be beneficial also
to disable BDD caching by unsetting varialeleable _bdd_cache .

dynamic_reorder Environment Variable|

Determines whether dynamic reordering is active. If thisalde is set, dynamic reorder-
ing will take place as described above. If not set (defaulb)dynamic reordering will

occur. This variable can also be set by passthghamic command line option when
invoking NUSMV.

reorder_method Environment Variable|

Specifies the ordering method to be used when dynamic variabkdering is fired. The
possible values, corresponding to the reordering metheaitable with the CUDD pack-
age, are listed below. The default valuesif
sift: Moves each variable throughout the order to find an opti-
mal position for that variable (assuming all other variable
are fixed). This generally achieves greater size reductions
than the window method, but is slower.

random: Pairs of variables are randomly chosen, and swapped in
the order. The swap is performed by a series of swaps of
adjacent variables. The best order among those obtained
by the series of swaps is retained. The number of pairs
chosen for swapping equals the number of variables in the
diagram.

1To be exactM; C Mo, whereM is the model from which the trace was generated, &fidis the
currently loaded, and built, model. Note however, that thé&/ mean that the trace is not valid for the model
M.

99

random _pivot:

sift _converge:

symmetry _sift:

symmetry _sift _converge:

window?2:
window3:
window4:

window2 _converge:
window3 _converge:
window4 _converge:

group _sift:

group _sift _converge:

annealing:
genetic:

exact:

Same agandom, but the two variables are chosen so
that the first is above the variable with the largest num-
ber of nodes, and the second is below that variable. In case
there are several variables tied for the maximum number
of nodes, the one closest to the root is used.

Thesift method is iterated until no further improvement
is obtained.

This method is an implementation of symmetric sifting. It
is similar to sifting, with one addition: Variables that be-
come adjacent during sifting are tested for symmetry. If
they are symmetric, they are linked in a group. Sifting
then continues with a group being moved, instead of a sin-
gle variable.

Thesymmetry sift method is iterated until no further
improvement is obtained.

Permutes the variables within windowsmadjacent vari-
ables, wher@ can be either 2, 3 or 4, so as to minimize the
overall BDD size.

Thewindow {2,3,4 } method is iterated until no further
improvement is obtained.

This method is similar tssymmetry _sift , but uses
more general criteria to create groups.

Thegroup _sift method is iterated until no further im-
provement is obtained.

This method is an implementation of simulated annealing
for variable ordering. This method is potentially very slow

This method is an implementation of a genetic algorithm
for variable ordering. This method is potentially very slow

This method implements a dynamic programming ap-
proach to exact reordering. It only stores one BDD at a
time. Therefore, it is relatively efficient in terms of mem-
ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean
variables.

100

linear: This method is a combination of sifting and linear
transformations.

linear _conv: Thelinear method is iterated until no further improve-
ment is obtained.

dynamic_var_ordering - Deals with the dynamic variable order Command
ing.

dynamic _var _ordering [-d] [-e <method>] [-f <method>] [-h]

Controls the application and the modalities of (dynamidjialde ordering. Dynamic
ordering is a technique to reorder the BDD variables to redhe size of the existing
BDDs. When no options are specified, the current status afrdynordering is displayed.
At most one of the optionse , -f , and-d should be specified. Dynamic ordering may
be time consuming, but can often reduce the size of the BDBmalically. A good
point to invoke dynamic ordering explicitly (using th option) is after the commands
build _model, once the transition relation has been built. It is posstblsave the
ordering found usingwrite _order in order to reuse it (usindpuild _model -i
order-file) in the future.

Command Options:
-d Disable dynamic ordering from triggering automatically.

-e <method> Enable dynamic ordering to trigger automatically whenever
a certain threshold on the overall BDD size is reached.
<method> must be one of the following:

e sift: Moves each variable throughout the order to find an
optimal position for that variable (assuming all other vari
ables are fixed). This generally achieves greater size re-

ductions than the window method, but is slower.
e random: Pairs of variables are randomly chosen, and

swapped in the order. The swap is performed by a series of
swaps of adjacent variables. The best order among those
obtained by the series of swaps is retained. The number of
pairs chosen for swapping equals the number of variables
in the diagram.

random_pivot: Same agandom, but the two variables
are chosen so that the first is above the variable with the
largest number of nodes, and the second is below that vari-
able. In case there are several variables tied for the maxi-

mum number of nodes, the one closest to the root is used.
e sift_converge Thesift method is iterated until no further

improvement is obtained.
symmetry_sift: This method is an implementation of sym-

metric sifting. It is similar to sifting, with one addition:
Variables that become adjacent during sifting are tested
for symmetry. If they are symmetric, they are linked in
a group. Sifting then continues with a group being moved,
instead of a single variable.

101

e symmetry_sift_converge The symmetry_sift method is

iterated until no further improvement is obtained.
e window{2,3,4}: Permutes the variables within windows

of "n” adjacent variables, where "n” can be either 2, 3 or

4, so as to minimize the overall BDD size.
e window{2,3,4}_converge Thewindow{2,3,4} method is

iterated until no further improvement is obtained.

e group_sift: This method is similar teymmetry_sift, but

uses more general criteria to create groups.

group_sift_converge The group_sift method is iterated
until no further improvement is obtained.

e annealing This method is an implementation of simu-
lated annealing for variable ordering. This method is po-
tentially very slow.

e genetic This method is an implementation of a genetic

algorithm for variable ordering. This method is poteniall

very slow.

exact This method implements a dynamic programming

approach to exact reordering. It only stores a BDD at a

time. Therefore, it is relatively efficient in terms of mem-

ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean

variables. i o " .
e linear: This method is a combination of sifting and linear

transformations.) o)
e linear_converge The linear method is iterated until no

further improvement is obtained.
-f <method> Force dynamic ordering to be invoked immediately. The val-
ues for<method> are the same as in optiea .

clean.bdd_cache- Cleans the cached results of evaluations of sy Command
bolic expressions to ADD and BDD representations.

clean _bdd_cached [-h]

During conversion of symbolic expressions to ADD and BDDresgntations the re-
sults of evaluations are normally cached (see additiontidey environment variable
enable _bdd_cache). This allows to save time by avoid the construction of BDD fo
the same symbolic expression several time.

In some situations it may be preferable to clean the cachdrapdcollected ADD and
BDD. This operation can be done, for example, to free some angnfAnother possible
reason is that dynamic reordering may modify all existingBDand cleaning the cache
thereby freeing the BDD may speed up the reordering.

This command is designed specifically to free the internaheaf evaluated expressions
and their ADDs and BDDs. Note that only the cache of symbekpression-to-bdd eval-
uator is freed. BDDs of variables, constants and expresgiofiected in BDD FSM or
anywhere else are not freed.

print formula - Prints a formula in canonical format. Command|

print _formula [-h] [-v] [-f] "expression”

Prints the number of satsfying assignments for the givemdita. In verbose mode, prints
also the list of such assigments. In formula mode, a canbr@peesentation of the formula
is printed.

102

Command Options:

-V Prints explicit models of the formula.
-f Prints the simplified and canonical formula.
enablebdd_cache Environment Variable|

This variable determines if during evaluation of symbobipression to ADD and BDD
representations the obtained results are cached or nae.thitif the variable is set down
consequently computed results are not cached but the pslyioached data remain un-
modified and will be used during later evaluations.

The default value of this variable s which can be changed by a command line option
-disable _bdd_cache .

For more information about the reasons of why BDD cache shbaldisabled in some
situations see commarndean _bdd_cache .

print _bdd_stats- Prints out the BDD statistics and parameters Command|

print _bdd _stats [-h]

Prints the statistics for the BDD package. The amount ofrmédion depends on the
BDD package configuration established at compilation tifttee configurtion parameters
are printed out too. More information about statistics aachmeters can be found in the
documentation of the CUDD Decision Diagram package.

setbdd_parameters - Creates a table with the value of all cur Command
rently active NuSMV flags and change accordingly the cordigjer
parameters of the BDD package.

set _bdd _parameters [-h] [-s]

Applies the variables table of thed$MV environnement to the BDD package, so the
user can set specific BDD parameters to the given value. Tmsmand works in con-
junction with theprint _bdd_stats andset commands.print _bdd_stats first
prints a report of the parameters and statistics of the sib@édmanager. By using the
commandset , the user may modify the value of any of the parameters of tickeillying
BDD package. The way to do it is by setting a value in the véei@DD.parameter

name whereparameter name is the name of the parameter exactly as printed by the
print _bdd _stats command.

Command Options:

-S Prints the BDD parameter and statistics after the
modification.

3.13 Administration Commands
This section describes the administrative commands affieyehe interactive shell of NISMV.

| - shelLcommand Command||

103

“l1 " executes a shell command. The “sheimmand” is executed by calling “bin/sh -c
shelLcommand”. If the command does not exists or you have not tiie td execute it,
then an error message is printed.

alias - Provides an alias for a command Command|

alias [-h] [<name> [<string>]]

The alias command, if given no arguments, will print the definition df eurrent
aliases. Given a single argument, it will print the definitaf that alias (if any). Given two
arguments, the keywordname> becomes an alias for the command stritgjring>
replacing any other alias with the same name.

Command Options:
<name> Alias
<string> Command string

It is possible to create aliases that take arguments by u$iaghistory substitution
mechanism. To protect the history substitution charac®érffom immediate expansion,
it must be preceded by &\' when entering the alias.

For example:

NuSMV> alias read "read _model -i %:1.smv ; set

input _order _file %:1.ord"

NuSMV> read short

will create an alias ‘read’, execute "readodel -i short.smv; set inpwdrdecfile
short.ord”. And again:

NuSMV> alias echo2 "echo Hi ; echo % = I"

NuSMV> echo2 happy birthday

will print:

Hi

happy birthday !

CAVEAT: Currently there is no check to see if there is a ciacudependency in the alias
definition. e.qg.

NuSMV> alias foo "echo print _bdd _stats; foo"

creates an alias which refers to itself. Executing the conthfi@o will result an infinite
loop during which the commangtint _bdd _stats will be executed.

echo- Merely echoes the arguments Command|

echo [-h] [-2] [-n] [-0 filename [-a]] <string>

Echoes the specified string either to standard output, filettame if the option-o is
specified.

Command Options:

-2 Redirects output to the standard error instead of the stelnda
output. This cannot be used in combination with the option
-0.

-n Does not output the trailing newline.

-0 filename Echoes to the specified filename instead of to standard out-

put. If the option-a is not specified, the filéilename
will be overwritten if it already exists.

-a Appends the output to the file specified by optian, in-
stead of overwritting it. Use only with the optien .

104

help - Provides on-line information on commands Command|

help [-a] [-h] [<command>]

If invoked with no argumentkelp prints the list of all commands known to the command
interpreter. If a command name is given, detailed infororafor that command will be
provided.

Command Options:

-a Provides a list of all internal commands, whose names begin
with the underscore character’{’by convention.

history - list previous commands and their event numbers Command|

history [-h] [<num>]
Lists previous commands and their event numbers. This islXUike history mechanism
inside the NUSMYV shell.

Command Options:
<num> Lists the last<num> events. Lists the last 30 events if
<num>is not specified.

History Substitution:

The history substitution mechanism is a simpler versionhef ¢sh history substitution
mechanism. It enables you to reuse words from previouslgdygwmmands.

The default history substitution character is the ‘%’ (‘8 default for shell escapes, and
‘# marks the beginning of a comment). This can be changeagusieset command. In
this description '%’ is used as the histochar. The ‘%’ can appear anywhere in a line.
A line containing a history substitution is echoed to theesarafter the substitution takes
place. ‘%’ can be preceded by a ‘in order to escape the sutisti, for example, to enter
a ‘%’ into an alias or to set the prompt.

Each valid line typed at the prompt is saved. If thistory variable is set (see help page
for set), each line is also echoed to the history file. You can uséigtery command
to list the previously typed commands.

Substitutions:

At any point in a line these history substitutions are atdda

Command Options:

%:0 Initial word of last command.

%:n n-th argument of last command.

%$ Last argument of last command.

% All but initial word of last command.
%% Last command.

%stuf Last command beginning with “stuf”.
%n Repeat the n-th command.

105

%-n Repeat the n-th previous command.

~old “new Replace “old” with “new” in previous command. Trailing
spaces are significant during substitution. Initial spares
not significant.

print _usage- Prints processor and BDD statistics. Command |

print _usage [-h]
Prints a formatted dump of processor-specific usage s$tatisthd BDD usage statistics.
For Berkeley Unix, this includes all of the information irethetrusage() structure.

quit - exits NuSMV. Command||

quit [-h] [-s] [-X]
Stops the program. Does not save the current network befidege

Command Options:

-S Frees all the used memory before quitting. This is slower,
and it is used for finding memory leaks.

-X Leaves immediately. Skip all the cleanup code, leaving it to
the OS. This can save quite a long time.

reset- Resets the whole system. Command |

reset [-h]
Resets the whole system, in order to read in another modebametform verification on
it.

set- Sets an environment variable Command |

set [-h] [<name>] [<value>]

A variable environment is maintained by the command inttgr Theset command
sets a variable to a particular value, and tinset command removes the definition of a
variable. Ifset is given no arguments, it prints the current value of all alales.

Command Options:
<name> Variable name
<value> Value to be assigned to the variable.

Using theset command to set a variable, without giving any explicit vaisi@llowed,
and sets the variable o

NuSMV> set foo

will set the variable foo td..

Interpolation of variables is allowed when using #&t command. The variables are
referred to with the prefix of '$’. So for example, what follewan be done to check the
value of a set variable:

NuSMV> set foo bar

NuSMV> echo $foo

bar

106

The last line “bar” will be the output produced byu$MYV. Variables can be extended by
using the character ‘' to concatenate values. For example:

NuSMV> set foo bar

NuSMV> set foo $foo:foobar

NuSMV> echo $foo

bar:foobar

The variablefoo is extended with the valudbobar . Whitespace characters may
be present within quotes. However, variable interpolateys the restriction that the
characters "’ and '/ may not be used within quotes. Thisasatlow for recursive
interpolation. So for example, the following is allowed

NuSMV> set "foo bar" this

NuSMV> echo $"foo bar"

this

The last line will be the output produced byulSMV.

But in the following, the value of the variabfeo/bar ~ will not be interpreted correctly:
NuSMV> set "foo/bar" this

NuSMV> echo $"foo/bar"

foo/bar

If a variable is not set by theet command, then the variable is returned unchanged.
Different commands use environment information for défrpurposes. The command
interpreter makes use of the following parameters:

Command Options:

autoexec Defines a command string to be automatically executed af-
ter every command processed by the command interpreter.
This is useful for things like timing commands, or tracing
the progress of optimization.

open _path “open.path” (in analogy to the shell-variable PATH) is a list
of colon-separated strings giving directories to be seatch
whenever a file is opened for read. Typically the current di-
rectory (.) is the first item in this list. The standard system
library (typically NuSMVLIBRARY_PATH is always im-
plicitly appended to the current path. This provides a con-
venient short-hand mechanism for reaching standard jibrar
files.

nusmv_stderr Standard error (normally stderr)) can be re-directed to a
file by setting the variablausmv _stderr

nusmv_stdout Standard output (normally stdout)) can be re-directed to a
file by setting the variablausmv_stdout

source- Executes a sequence of commands from a file Command |

source [-h] [-p] [-s] [-X] <file> [<args>]
Reads and executes commands from a file.
Command Options:
-p Prints a prompt before reading each command.

107

-S Silently ignores an attempt to execute commands from a
nonexistent file.

-X Echoes each command before it is executed.
<file> File name.

Arguments on the command line after the filename are remedbaut not evaluated.
Commands in the script file can then refer to these argumeinig the history substitution
mechanism. EXAMPLE:

Contents otest.scr

read _.model -i %:2
flatten _hierarchy
build _variables
build _model
compute _fairness

Typing source test.scr short.smv on the command line will execute the
sequence

read _model -i short.smv
flatten _hierarchy

build _variables

build _model

compute _fairness

(In this case%:0 getssource , %:1 getstest.scr , and%:2 getsshort.smv .) If
you type alias st source test.scr and then typest short.smv bozo
you will execute

read _-model -i bozo
flatten _hierarchy
build _variables
build _model
compute _fairness

becausebozo was the second argument on the last command line typed. kr oth
words, command substitution in a script file depends on hansthipt file was invoked.
Switches passed to a command are also counted as positemaah@ters. Therefore, if
you typest -x short.smv bozo , you will execute

read _model -i short.smv
flatten _hierarchy

build _variables

build _model

compute _fairness

To pass thex switch (or any other switch) tsource when the script uses posi-
tional parameters, you may define an alias. For instaatias srcx source

X .

See the variablen _failure _script _quits for further information.

time - Provides a simple CPU elapsed time value Command |

108

time [-h]
Prints the processor time used since the last invocatioheofime command, and the
total processor time used sinc&yEMV was started.

unalias - Removes the definition of an alias. Command|

unalias [-h] <alias-names>
Removes the definition of an alias specified viaglias command.

Command Options:
<alias-names> Aliases to be removed

109

unset- Unsets an environment variable Command|

unset [-h] <variables>

A variable environment is maintained by the command inetgr Theset command
sets a variable to a particular value, and tinlset command removes the definition of a
variable.

Command Options:

<variables> Variables to be unset.
usage- Provides a dump of process statistics Command |
usage [-h]

Prints a formatted dump of processor-specific usage $tatistor Berkeley Unix, this
includes all of the information in the getrusage() struetur

which - Looks for a file called "filename” Command|

which [-h] <file _name>

Looks for a file in a set of directories which includes the eatrdirectory as well as those
in the NUSMYV path. If it finds the specified file, it reports the found 'lpath. The
searching path is specified through #e¢ open _path command innusmvrc .

Command Options:
<file _name> File to be searched

3.14 Other Environment Variables

The behavior of the system depends on the value of some enwénat variables. For instance, an
environment variable specifies the partitioning methodet@sed in building the transition rela-
tion. The value of environment variables can be inspectddadified with the “set” command.
Environment variables can be either logical or utility.

autoexec Environment Variable|

Defines a command string to be automatically executed afegy eommand processed by
the command interpreter. This may be useful for timing comasaor tracing the progress
of optimization.

on_failure _script_quits Environment Variable|

When a non-fatal error occurs during the interactive mdae jrteractive interpreter sim-
ply stops the currently executed command, prints the reastre problem, and prompts
for a new command. When set, this variables makes the commgergreter quit when
an error occur, and then quit6MV. This behaviour might be useful when the command
source is controlled by either a system pipe or a shell script. Uridese conditions a
mistake within the script interpreted Ispurce or any unexpected error might hang the
controlling script or pipe, as by default the interpreteruaosimply give up the current
execution, and wait for further commands. The default valuthis environment variable
is 0.

110

filec Environment Variable|

Enables file completion a la “csh”. If the system has been deahpvith the “readline”
library, the user is able to perform file completion by typithg <TAB> key (in a way
similar to the file completion inside the “bash” shell). Iethystem has not been compiled
with the “readline” library, a built-in method to performdicompletion a la “csh” can be
used. This method is enabled with tleet filec * command. The “csh” file comple-
tion method can be also enabled if the “readline” library basen used. In this case the
features offered by “readline” will be disabled.

shell.char Environment Variable|

shell _char specifies a character to be used as shell escape. The deftudtof this
environment variable id “.

history_char Environment Variable|

history _char specifies a character to be used in history substitutions défault value
of this environment variable i$4.

openpath Environment Variable|

open _path (in analogy to the shell-variablBATH is a list of colon-separated strings
giving directories to be searched whenever a file is openedeéal. Typically the current
directory () is first in this list. The standard system libralN SMVLIBRARY_PATH

is always implicitly appended to the current path. This jfes a convenient short-hand
mechanism for reaching standard library files.

nusmv_stderr Environment Variable|

Standard error (normallgtderr) can be re-directed to a file by setting the variable
nusmv_stderr

nusmv_stdout Environment Variable|

Standard output (normallgtdout) can be re-directed to a file by setting the internal
variablenusmv _stdout

nusmv_stdin Environment Variable|

Standard input (normallgtdin) can be re-directed to afile by setting the internal variable
nusmv_stdin

111

go

| read_model

\lli

| flatten_hierarchy

reset

v

encode_variables

show_plugins
show_property
show_traces
show_vars
write_flat_model
write_reduced_model
write_simplified_model

I

go_bmc

v

| build_flat_model

build_boolean_model

| write_order

-

| build_model

write_boolean_model

2

|

|

check_ctispec
check_invar
check_ltlspec
check_property
check_pslispec
compute
check_ltlspec_simp

check_fsm

compute_reachable
print_fsm_stats
print_fair_states
print_fair_transitions
print_reachable_states

goto_state
pick_state
simulate

bmc_simulate
check_invar_bmc
check_invar_bmc_inc
check_ltlspec_bmc
check_ltlspec_bmc_inc
check_Itlspec_bmc_onepb
check_Itlspec_sbmc
check_ltlspec_sbmc_inc
check_pslispec
gen_invar_bmc
gen_ltlspec_bmc
gen_ltlspec_bmc_onepb
gen_ltlspec_sbmc

Figure 3.1: The dependency among8MYV commands.

112

Chapter 4

Running NuSMV batch

When the-int option is not specified, NSMV runs as a batch program, in the style of SMV,
performing (some of) the steps described in previous seatia fixed sequence.

system _prompt> NuSMWV [conmand |ine options] input-file <RET>

The program described imput-file is processed, and the corresponding finite state machine
is built. Then, ifinput-file contains formulas to verify, their truth in the specifiedusture is
evaluated. For each formula which is not true a counterelamprinted.

The batch mode can be controlled with the following commamel dptions:

NuSMV [-h | -help] [-v vl] [-int] [[-source script_file | -load script_file]]
[-s] [-old] [-old_div_op] [-smv_old] [-dcX]
[-cpp] [-pre ppg [-ofm fmfile] [-obm bmfile]
[-Ip] [-n idX] [-is] [-ic] [-ils] [-ips] [-ii]
[-ctt] [[-f] [-r]I[-af] [-fit] [-AG] [-coi]
[-i iv_file] [-o0 ovfile] [-t tv_file] [-reorder] [-dynamic]
[F-m method [-disable_bdd_cache] [-bdd_soh heuristics]
[[-mona]|[-thresh cp-t]|[-cp cp-t]|[-iwls95 cp-t]]

[-noaffinity] [-iwls95preorder]

[-bmc] [-bmc _length k] [-sat _solver = namé
[-sin on|off] [-rin on|off] [-ojeba algorithm
[input-filg

where the meaning of the options is described belomgiit-fileis not provided in batch mode,
then the model is read from standard input.

-help
-h Prints the command line help.
-v verbose-level Enables printing of additional information on the internal

operations of NSMV. Settingverbose-levelo 1 gives the
basic information. Using this option makes you feel better,
since otherwise the program prints nothing until it finishes
and there is no evidence that it is doing anything at all. Set-
ting theverbose-levehigher than 1 enables printing of much
extra information.

113

-int

-source scfile

-load scfile
-S

-old

-old _div _op

-dcx

-Cpp

-pre pps

-ofm fmfile
-obm bmfile
-Ip

-n idx

-is

-ic

-ils

Enables interactive mode
Executes NuSMV commands from fibe _file
same as -source (deprecated)

Avoids to load the MNSMV commands con-
tained in ~/.nusmvrc or in .nusmvrc or in
${NUSMVLIBRARY_PATH }/master.nusmvrc

Keeps backward compatibility with older versions of
NuSMV. This option disables some new features like type
checking and dumping of new extension to SMV files. In ad-
dition, if enabledcase conditions also acceptd” which

is semantically equivalent to the truth valUERUE. This
backward compatibility feature has been added uSWV
2.5.1 in order to help porting of old SMV models. Infact,
in versions older than 2.5.1, it was pretty common to lise

in case conditions expressions. For an example please see
section 2.2.3

Enables the old semantics of ™ and “mod’ operations
(from NUSMV 2.3.0) instead of ANSI C semantics.

Disables the generation of counter-examples for prop-
erties that are proved to be false. See also variable
counter _examples

Runs preprocessor on SMV files before any of those speci-
fied with the -pre option.

Specifies a list of pre-processors to run (in the order given)
on the input file before it is parsed byd$MV. Note that if
the-cpp command is used, then the pre-processors speci-
fied by this command will be run after the input file has been
pre-processed by that pre-processopsis either one sin-

gle pre-processor name (with or without double quotes) or
itis a space-seperated list of pre-processor names cedtain
within double quotes.

prints flattened model to filfn_file

Prints boolean model to filen_file

Lists all properties in SMV model

Specifies which property of SMV model should be checked

Does not checkSPEC properties. Sets to “1” the
ignore _spec environment variable.

Does not checkCOMPUTEproperties. Sets to “1” the
ignore _compute environment variable.

Does not checkL.TLSPEC properties. Sets to “1" the
ignore _ltlspec environment variable.

114

-flt

-coi

i iv_file
-0 ovfile
-t tv file

Does not checkPSLSPECproperties. Sets to “1” the
ignore _psispec environment variable.

Does not checkNVARSPECproperties. Sets to “1” the
ignore _invariant environment variable.

Checks whether the transition relation is total.

Computes the set of reachable states before evaluating CTL
expressions. Since NuSMV-2.4.0 this option is set by de-
fault, and itis provided for backward compatibility onlye&

also option -df.

Prints the number of reachable states before exiting. If
the -f option is not used, the set of reachable states is
computed.

Disable the computation of the set of reachable states. This
option is provided since NuSMV-2.4.0 to prevent the com-
putation of reachable states that are otherwise computed by
default.

Forces the computation of the set of reachable states for
the tableau resulting from BDD-based LTL model check-
ing (commandcheck _ltispec). If the option-flt is

not specified (default), the resulting tableau will inhéinié
computation of the reachable states from the model, if en-
abled. If the optionflt is specified, the reachable states
set will be calculated for the modeind for the tableau
resulting from LTL model checking. This might improve
performances of the commaxtieck _ltlspec , but may
also lead to a dramatic slowing down. This options has ef-
fect only when the calculation of reachable states is edable
(see-f).

Verifies only AG formulas using an ad hoc algorithm
(see documentation for tlegy_only _search environment
variable).

Enables cone of influence reduction. Sets to “1” the
cone _of _influence environment variable.

Reads the variable ordering from filefile.

Writes the variable ordering to filev_file.

Reads a variable list from filev_file. This list defines
the order for clustering the transition relation. This fea-
ture has been provided by Wendy Johnston, University of
Queensland. The results of Johnston’s et al. research have
been presented at FM 2006 in Hamilton, Canada. See
[WJIKWLvABROE].

115

-reorder

-dynamic
-m method

-disable _bdd _cache

-bdd _soh heuristics

-mono
-thresh cp.t

-cp cpt
-iwls95 cpt

-noaffinity

-iwls95preoder
-bmc

-bmc _length
-sat _solver
-sin on,off

-rin on,off

name

Enables variable reordering after having checked all the
specification if any.
Enables dynamic reordering of variables

Uses methodwhen variable ordering is enabled. Pos-
sible values for method are those allowed for the
reorder _method environment variable (see Section 3.12
[Interface to DD package], page 99).

Sets the default value of environment variable
enable _bdd_cache to 0, i.e. the evaluation of symbolic
expression to ADD and BDD representations are not
cached. See commamtean _bdd_cache for reasons of
why BDD cache should be disabled sometimes.

Sets the default value of environment variable
bdd _static _order _heuristics to heuristics

i.e. the option sets up the heuristics to be used to
compute BDD ordering statically by analyzing the
input model. See the documentation about variable
bdd _static _order _heuristics on page 53 for more
details.

Enables monolithic transition relation

conjunctive partitioning with threshold of each partitiset
to cp_t (DEFAULT, with cp-t=1000)

DEPRECATED: usé¢hresh instead.

Enables Iwls95 conjunctive partitioning and sets the thwes
old of each partition t@p_t

Disables affinity clustering
Enabledwls95CPpreordering

Enables BMC instead of BDD model checking (works only
for LTL properties and PSL properties that can be translated
into LTL)

Setsbmc_length variable, used by BMC

Setssat _solver variable, used by BMC so select the sat
solver to be used.

Enables (on) or disables (off) Sexp inlining, by setting-sys
tem variablesexp _inlining . Default value ioff .
Enables (on) or disables (off) RBC inlining, by setting sys-
tem variablerbc _inlining . Default value ison. The
idea about inlining was taken from [ABEOO] by Parosh Aziz
Abdulla, Per Bjesse and Niklas Eén.

116

-ojeba algorithm Sets the algorthim used for BDD-based language emptiness
of Blichi fair transition systems by setting system vagabl

oreg justice _emptiness _bdd_algorithm (de-
fault is EL_.bwd). The available algorithms areEL_bwd
EL_fwd

117

Bibliography

[ABEOO]

[BCCZ99]

[BCL*94]

[CBM90]

[CCGT02]

[CCGROO]

[CGHY7]

[Dil88]

[EL86]

[EMSS91]

[ES04]

P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reslity analysis based
on sat-solvers. IProceedings of Tools and Algorithms for Construction and
Analysis of Systems, 6th International Conference, TAGH®B, Zolume
1785 ofLecture Notes in Computer Scienpages 411-425. Springer, 2000.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symhmimodel checking
without bdds. InTools and Algorithms for Construction and Analysis of
Systems, In TACAS’9®arch 1999.

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, andID.Dill. Sym-
bolic model checking for sequential circuit verificationn IEEE Trans-
actions on Computer-Aided Design of Integrated Circuitsl é8ystems,
13(4):401-424 April 1994.

O. Coudert, C. Berthet, and J. C. Madre. Verificatadrsynchronous se-
guential machines based on symbolic execution.Inld. Sifakis, editor,
Proceedings of the International Workshop on Automatidfi¢ation Meth-
ods for Finite State Systems, volume 407 of LNCS, pages 38588rlin
June 1990.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,.lRistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensourcedoslymbolic
model checking. IfProceedings of Computer Aided Verification (CAV,02)
2002.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. RoveNusmv: a new sym-
bolic model checker. Imnternational Journal on Software Tools for Tech-
nology Transfer (STTT), 2(4March 2000.

E. Clarke, O. Grumberg, and K. Hamaguchi. Anotheklat Itl model
checking. InFormal Methods in System Design, 10(1):57-Fkbruary
1997.

D. Dill. Trace theory for automatic hierarchical nfication of speed-
independent circuits. IACM Distinguished Dissertations. MIT Pre4988.

E. Emerson and C. Lei. Efficient model checking in freants of the propo-
sitional mu-calculus (extended abstract). LICS pages 267-278. IEEE
Computer Society, 1986.

E. Allen Emerson, A. K. Mok, A. Prasad Sistla, andSknivasan. Quan-
titative temporal reasoning. I[Bdmund M. Clarke and Robert P. Krushan,
editors, Proceedings of Computer-Aided Verification (C®Y; volume 531
of LNCS, pages 136-145, Berlin, Germadyne 1991.

Niklas Eén and Niklas Sérensson. Temporal induchy incremental sat
solving. In Ofer Strichman and Armin Biere, editoElectronic Notes in
Theoretical Computer Scienceolume 89. Elsevier, 2004.

118

[HKQO3]

[KHLO5]

[LBHJO5]

[Mar85]

[McM92]
[McM93]
[MHS00]
[PSL]
[psI03]

[RAP*95]

[sfVS96]

[She04]

[Som98]

[WJIKWLVABRO6]

T. A. Henzinger, O. Kupferman, and S. Qadeer. Fierehistoric toPost
modern symbolic model checkingFormal Methods in System Design
23(3):303-327, 2003.

T. Junttila K. Heljanko and T. Latvala. Incrementahd complete bounded
model checking for full PLTL. In K. Etessami and S. K. Rajanmad-
itors, Computer Aided Verification, 17 International Conference CAV
2005 number 3576 in Lecture Notes in Computer Science, pagek198—
Springer, 2005.

T. Latvala, A. Biere, K. Heljanko, and T. Junttil&imple is better: Efficient
bounded model checking for past LTL. In R. Cousot, edi@tification,
Model Checking, and Abstract Interpretation, 6th Intefoatl Conference
VMCAI 2005 number 3385 in Lecture Notes in Computer Science, pages
380-395. Springer, 2005.

A.J. Martin. The design of a self-timed circuit faisttibuted mutual exclu-
sion. InIn H. Fuchs and W.H. Freeman, editoBroceedings of the 1985
Chapel Hill Conference on VLSpages 245-260, New Yorko85.

K.L. McMillan. The smv system — draft. IAvailable athttp://www.
cs.cmu.edu/ ~ modelcheck/smv/smvmanual.r2.2.ps ,1992.

K.L. McMillan. Symbolic model checking. IKluwer Academic Publ.
1993.

Moon, Hachtel, and Somenzi. Border-block tringdtzrm and conjunction
schedule in image computation. FiMCAD, 2000.

Language Front-End for Sugar Foundation Language.
http://www.haifa.il.ibm.com/projects/verificationtgar/parser.html.

Accellera, Property Specification Language - Rafee Manual - Version
1.01. http://www.eda.org/vfv/docs/pbim-1.01.pdf, April 2003.

R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. #an. Effi-
cient bdd algorithms for fsm synthesis and verification. IHTHEEE/ACM
Proceedings International Workshop on Logic SynthesigelTahoe (NV)
May 1995.

"VIS: A system for Verification and The VIS Group Siesis”. Proceed-
ings of the 8th international conference on computer aidedfivation,
p428-432. InSpringer Lecture Notes in Computer Science, 1102, Edited
by R. Alur and T. Henzinger, New Brunswick, [1996.

Daniel Sheridan. The optimality of a fast cnf cosi@m and its use with
sat. INSAT, 2004.

F. Somenzi. Cudd: Cu decision diagram package —asel@.2.0. IrDe-
partment of Electrical and Computer Engineering — Univigref Colorado
at Boulder May 1998.

P. A. Strooper W. Johnston K. Winter L. van dBarg and P. Robinson.
Model-based variable and transition orderings for efficmbolic model
checking. InFM 2006: Formal Methodsnumber 4085 in Lecture Notes in
Computer Science, pages 524-540. Springer Berlin, 2006.

119

Appendix A

Compatibility with CMU SMV

The NUSMYV language is mostly source compatible with the origirebion of SMV distributed
at Carnegie Mellon University from which we started. In thjgpendix we describe the most
common problems that can be encountered when trying to as€MJ SMV programs with
NUSMV.

The main problem is variable names in old programs that aisfivith new reserved key-
words. The list of the new reserved keywords ai8MV w.r.t. CMU SMV is the following:

F, G, X, U, V, These names are reserved for the LTL temporal operators.
W, H, O, Y, Z

S, T,B

CTLSPEC Itis used to introduce CTL specifications.

LTLSPEC Itis used to introduce LTL specifications.

INVARSPEC It is used to introduce invariant specifications.
PSLSPEC Itis used to introduce PSL specifications.

IVAR Itis used to introduce input variables.

FROZENVAR It is used to introduce frozen variables.

JUSTICE Itis used to introduce “justice” fairness constraints.
COMPASSION Itis used to introduce “compassion” fairness constraints.
CONSTANTS It is used to force declaration of constants.

word Itis used to declare word type variables.

wordl Itis used to cast boolean expressions to word type.

bool Itis used to cast wordl expressions to boolean type.
unsigned Itis used to cast signed words to unsigned ones.

signed Itis used to cast unsigned words to signed ones.

extend It is used to increase the width of words.

TheIMPLEMENTSINPUT, OUTPUTstatements are not no longer supported SWV.
NuSMV differs from CMU SMV also in the controls that are perfathon the input for-

mulas. Several formulas that are valid for CMU SMV, but thatdnno clear semantics, are not
accepted by NSMV.
In particular:

e |tis no longer possible to write formulas containing netstedt .

TRANS
next(alpha & next(beta | next(gamma))) -> delta

120

e |t is no longer possible to write formulas containingekt ’ in the right hand side of
“normal” and “init” assignments (they are allowed in thehtidpand side of “next” assign-
ments), and with the statementslVAR and ‘INIT .

INVAR
next(alpha) & beta
INIT
next(beta) -> alpha
ASSIGN
delta := alpha & next(gamma); -- normal assignments
init(gamma) := alpha & next(delta); -- init assignments

e |tis no longer possible to writeSPEC, FAIRNESS statements containinguext .

FAIRNESS
next(running)
SPEC
next(x) & y

e The check for circular dependencies among variables hasdwee more restrictive. We
say that variable« depends on variablg if x := f(y). We say that there is a circular
dependency in the definition &fif:

— xdepends on itself (e.o:=f(X,y));

— xdepends oy andy depends o (e.g.x := f(y) andy :=f(x) or x :=f(z), z := f(y)
andy :=f(x)).

In the case of circular dependencies among variables teeme fixed order in which
we can compute the involved variables. Avoiding circulgpetedencies among variables
guarantee that there exists an order in which the variallede computed. In NSMV
circular dependencies are not allowed.

In CMU SMV the test for circular dependencies is able to detécular dependencies
only in “normal” assignments, and not in “next” assignmefiise circular dependencies
check of NUSMV has been extended to detect circularities also in “naessignments.
For instance the following fragment of code is accepted by CBMV but discarded by

NUSMV.
MODULE main
VAR
y : boolean;
X : boolean;
ASSIGN
next(x) = x & next(y);

next(y) =y & next(x);

Another difference betweend&MV and CMU SMV is in the variable order file. The vari-
able ordering file accepted byd$MV can be partial and can contain variables not declared in
the model. Variables listed in the ordering file but not desdidn the model are simply discarded.
The variables declared in the model but not listed in theatdeifile provided in input are created
at the end of the given ordering following the default ordgri All the ordering files generated
by CMU SMV are accepted in input from®™SMV but the ordering files generated byySMV
may be not accepted by CMU SMV. Notice that there is no gueasatitat a good ordering for
CMU SMV is also a good ordering for 6MV. In the ordering files for NSMV, identifier
_process _selector _can be used to control the position of the variable that eeepdocess
selection. In CMU SMV it is not possible to control the pasitiof this variable in the ordering;
it is hard-coded at the top of the ordering. A further diffeze about variable ordering consists
in the fact that in NSMV it is allowed to specify single bits of scalar variablésthe example:

121

VAR x : 0..7;

NUSMV will create three variables.0 ,x.1 andx.2 that can be explicitly mentioned in
the variable ordering file to fine control their ordering.

122

Appendix B

Typing Rules

This appendix gives the explicit formal typing rules fouBMV'’s input language, as well as
notes on implicit conversion and casting.

In the following, an atomic constant is defined as being anyeece of characters starting
with a character in the s¢A-Za-z _} and followed by a possible empty sequence of characters
from the sef{A-Za-z0-9 _$#- \}. An integer is any whole number, positive or negative.

B.1 Types

The main types recognised byu$MV are as follows:
boolean
integer
symbolic enum
integers-and-symbolic enum
boolean set
integer set
symbolic set
integers-and-symbolic set
unsigned word[N] (whereNis any whole numbep 1)
signed word[N] (whereNis any whole numbep 1)
For more detalied description of existing types see Se&ibifiTypes], page 7.

B.2 Implicit Conversion

There is only one kind of implicit convertion. For more infieation on type ordering see Sec-
tion 2.2.1 [Implicit Type Conversion], page 10.

Implicit type convertions changes the type of an expresgiats counterparset type. The
Figure B.2 shows the direction of such convertions. For nrdi@@mation onset types and their
counterpart types see Section 2.1.6 [Set Types], page 8.

123

unsigned word[1]
integer symbolic enum

boolean l 1
integers-and-symbolic enum unsigned word[3]

unsigned word[2]

signed word[1]
integer set symbolic set

boolean set l l
integers-and-symbolic set signed word|[3]

signed word[2]

Figure B.1: The ordering on the types inSMV

boolean — boolean set

integer — integer set

symbolic enum — symbolic set

integers-and-symbolic enum — integers-and-symbolic set

Figure B.2: Implicit convertion to counterpaet types

B.3 Type Rules

The type rules are presented below with the operators orefharid the signatures of the rules
on the right. To save space, more than one operator may besdeftthand side, and it is also
the case that an individual operator may have more than gnatsire. For more information on
these expressions and their type rules see Section 2.24&5ipns], page 9.

Constants

booleanconstant boolean

integerconstant integer

symbolicconstant :symbolic enum

word_constant unsigned word[N] or signed word[N] (whereN is the number of bits required)
rangeconstant integer set

Variable and Define

variableidentifier : Type (whereType is the type of the variable)
defineidentifier :Type (whereType is the type of the define’s expression)

124

Arithmetic Operators

- : integer — integer
: unsigned word[N] — unsigned word[N]
: signed word[N] — signed word[N]
+,-,/,* :integer* integer — integer
- unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]
mod . integer * integer — integer
: unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]
For operations on words, the result is taken modulo
>, <, >=, <= integer * integer — boolean
: unsigned word[N] * unsigned word[N] — boolean
: signed word[N] * signed word[N] — boolean

Logic Operators

! (negation) ‘boolean — boolean
: unsigned word[N] — unsigned word[N]
: signed word[N] — signed word[N]
&, |,->,<->,xor ,xnor :boolean* boolean — boolean
: unsigned word[N] * unsigned word[N] — unsigned word[N]
: signed word[N] * signed word[N] — signed word[N]
E : boolean * boolean — boolean
. integer * integer — boolean
: symbolic enum * symbolic enum — boolean
. integers-and-symbolic enum *
integers-and-symbolic enum — boolean
: unsigned word[N] * unsigned word[N] — boolean
: signed word[N] * signed word[N] — boolean

Index Subscript Operator

expi[expz] : array N..M of subtype *word[N] — subtype
: array N..M of subtype *integer — subtype
the value ofexp2 has to be in range [N, M]

Bit-Wise Operators

(concatenation) word[N] * word[M] — unsigned word[N+M]
whereword[e] can be any ofinsigned word[e] or signed word[e]
expi[exp2, exps] :unsigned word[N] * integer * integer — unsigned word[exps — exp2 + 1]
: signed word[N] * integer * integer — unsigned word[exps — exp2 + 1]
exressiongzps andexps must be integers such thatOexps < exps <N
<<, >> (shift) : unsigned word[N] * integer — unsigned word[N]
: unsigned word[N] * unsigned word[e] — unsigned word[N]
: signed word[N] * integer — signed word[N]
: signed word[N] * unsigned word[e] — signed word[N]

125

Set Operators

{exp1,exps, ..., exp,} : equivalent to consecutivenion operations
union : boolean set * boolean set — boolean set
:integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
: integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
At first, if it is possible, the operands are converted torteet counterpart types,
then both operands are implicitly converted to a minimal c@n type
in : boolean set * boolean set — boolean set
. integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
. integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
At first, if it is possible, the operands are converted torteet counterpart types,
then implicit convertion is performed on one of the operands

Case and If-Then-Else Expression

case condy . resulti;
conds . results;
cond, . resulty;
esac

cond ? resulty : results
cond; must be of typdoolean. If one of result; is of aset type then all otheresulty, are

converted to their counterpaset types. The overall type of the expression is such a minimal
type that eaclresult; can be implicitly converted to.

Formula Operators

EX AX EF, AF, EG AG
X, Y,Z,GH F, O :boolean — boolean
A-U,E-U,U, S : boolean * boolean — boolean
A-BU, E-BU : boolean * integer * integer * boolean — boolean
EBF, ABF, EBG ABG : integer * integer * boolean — boolean

126

Miscellaneous Operators

Integer. Integer :integer _number * integer _number — integer

bool

toint

word1
signed
unsigned
extend

next , init

0

: unsigned word[1] — boolean

: integer — boolean

: boolean — integer

: unsigned word[N] constant— integer

: signed word[N] constant— integer

: boolean — unsigned word[1]

: unsigned word[N] — signed word[N]

: signed word[N] — unsigned word[N]

: unsigned word[e] * integer — unsigned word[N+integer]
: signed word[e] * integer — signed word[N+integer]
: any type— the same type

: any type— the same type

: boolean * boolean — no type

:integer * integer — no type

: integer * integer set — no type

: symbolic enum * symbolic enum — no type

: symbolic enum * symbolic set — no type

. integers-and-symbolic enum *

integers-and-symbolic enum — no type

. integers-and-symbolic enum *

integers-and-symbolic set — no type

: unsigned word[N] * unsigned word[N] — no type
: signed word[N] * signed word[N] — no type

Implicit type conversion is performed on the right operantyo

127

Appendix C

Production Rules

This appendix contains the syntactic production rules fating a NUSMYV program.

Identifiers

identifier ::
identifier_first_character
| identifier identifier_consecutive_character

identifier_first_character :: one of
ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghij kl mnopgrstuvwxyz_

identifier_consecutive_character ::
identifier_first_character
| digit
| one of $ # -
digit :: oneof 01234567829

Note that there are certain reserved keyword which cannoisbd as identifiers (see page
6).

Variable and DEFINE Identifiers
define_identifier :: complex_identifier
variable_identifier :: complex_identifier

Complex Identifiers

complex_identifier ::

identifier
| complex_identifier . identifier
| complex_identifier [simple_expression]
| self

Integer Numbers

integer_number ::

128

- digit
| digit
| integer_number digit

Constants

constant ::
boolean_constant
integer_constant
symbolic_constant
word_constant
range_constant

boolean_constant :: one of
FALSE TRUE

integer_constant :: integer_number

symbolic_constant :: identifier

word_constant :: 0 [word_sign_specifier] word_base [word_width]
word_sign_specifier :: one of
us

word_width :: integer_number (>0)

word_base :: b| B|] ol O]l d| D| h| H
word_value ::
hex_digit
| word_value hex_digit
| word_value -
hex_digit :: one of

0123456789abcdef ABCDEF

Note that there are some additional restrictions on thetdramat of word constants (see

page 11).

range_constant ::
integer_number .. integer_number

Basic Expressions

basic_expr ::
constant -- a constant
| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| (basic_expr)
| ! basic_expr -- logical/bitwise NOT
| basic_expr & basic_expr -- logical/bitwise AND
| basic_expr | basic_expr -- logical/bitwise OR
| basic_expr Xor basic_expr -- logical/bitwise exclusive OR
| basic_expr xnor basic_expr - logical/bitwise NOT xor
| basic_expr - > basic_expr -- logical/bitwise implication
| basic_expr <-> basic_expr -- logical/bitwise equivalence

129

_word_value

basic_expr = basic_expr -- equality

I

| basic_expr I = basic_expr -- inequality

| basic_expr < basic_expr -- less than

| basic_expr > basic_expr - greater than

| basic_expr <= basic_expr -- less than or equal

| basic_expr >= basic_expr -- greater than or equal

| - basic_expr -- unary minus

| basic_expr + basic_expr -- integer addition

| basic_expr - basic_expr - integer subtraction

| basic_expr * basic_expr -- integer multiplication

| basic_expr / basic_expr - integer division

| basic_expr nod basic_expr -- integer remainder

| basic_expr >> basic_expr - bit shift right

| basic_expr << basic_expr -- bit shift left

| basic_expr [index] -- index subscript

| basic_expr [integer_number : integer_number]
-- word bits selection

| basic_expr .. basic_expr - word concatenation

wordl (basic_expr)
-- boolean to word[1] convertion

bool (basic_expr)
-- word[1] and integer to boolean convertion

toint (basic_expr)
-- word[N] and boolean to integer convertion
| signed (basic_expr)
-- unsigned to signed word convertion
| unsigned (basic_expr)
-- signed to unsigned word convertion

| extend (basic_expr , basic_expr)
-- word width increase
| resize (basic_expr , basic_expr)

-- word width resizing

basic_expr uni on basic_expr
-- union of set expressions

| { set_body expr } -- set expression
| basic_expr i n basic_expr -- inclusion expression
| basic_expr ? basic_expr . basic_expr
-- if-then-else expression

| count (basic_expr_list)

-- count of TRUE boolean expressions
| case_expr -- case expression
| next (basic_expr) - next expression

basic_expr_list ::
basic_expr
| basic_expr_list , basic_expr

set_body_expr ::
basic_expr
| set_body_expr , basic_expr
Case Expression and If-Then-Else Expression
case_expr :: case case_body esac
case_body ::

basic_expr : basic_expr ;
| case_body basic_expr : basic_expr ;

basic_expr ? basic_expr : basic_expr

130

Simple Expression

simple_expr :: basic_expr

Note that simple expressiogannotcontainnext operators.

Next Expression

next_expr :: basic_expr

Type Specifier

type_specifier ::
simple_type_specifier
| module_type_spicifier

simple_type_specifier ::
bool ean
| word [integer_number]
| unsigned word [integer_number]
| signed word [integer_number]
|
I

{ enumeration_type_body }
integer_number .. integer_number
array integer_number .. integer_number

of simple_type_specifier

enumeration_type_body ::
enumeration_type_value
| enumeration_type_body , enumeration_type_value

enumeration_type_value :
symbolic_constant
| integer_number

Module Type Specifier
module_type_specifier ::
| identifier [([parameter_list])]
| process identifier [([parameter_list])]

parameter_list ::
simple_expr
| parameter_list , simple_expr

State, Input and Frozen Variables

var_declaration :: VAR var_list
ivar_declaration :: I VAR simple_var_list
frozenvar_declaration :: FROZENVAR simple_var_list
var_list :: identifier . type_specifier ;

| var_list identifier . type_specifier ;

131

simple_var_list :: identifier . simple_type_specifier ;
| simple_var_list identifier . simple_type_specifier ;

DEFINE Declaration

define_declaration :: DEFI NE define_body
define_body :: identifier 1 = simple_expr
| define_body identifier 1= simple_expr

CONSTANTS Declaration

constants_declaration :: CONSTANTS constants_body

constants_body :: identifier
| constants_body , identifier

ASSIGN Declaration

assign_constraint :: ASSI GN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier = simple_expr
| init (complex_identifier) = simple_expr
| next (complex_identifier) = next_expr
TRANS Statement
trans_constraint :: TRANS next_expr [;]
INIT Statement
init_constrain :: INI T simple_expr [;]
INVAR Statement
invar_constraint :: I NVAR simple_expr [;]
Module Declarations
module :: MODULE identifier [(module_parameters
module_parameters ::
identifier
| module_parameters , identifier

module_body ::
module_element
| module_body module_element

module_element ::
var_declaration

132

)] [module_body]

ivar_declaration
frozenvar_declaration
define_declaration
constants_declaration
assign_constraint
trans_constraint
init_constraint
invar_constraint
fairness_constraint
ctl_specification
invar_specification
Itl_specification
compute_specification
isa_declaration

ISA Declaration

isa_declaration :: | SA identifier

Warning: this is a deprecated feature and will eventually be remorati NUSMYV. Use
module instances instead.

CTL Specification

ctl_specification :: SPEC ctl_expr ;
ctl_expr ::
simple_expr -- a simple boolean expression
| (ctl_expr)
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr xnor ctl_expr -- logical NOT exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
| E [ctl_expr U ctl_expr] -- exists until
I

A [ctl_expr U ctl_expr] -- forall until
INVAR Specification
invar_specification :: I NVARSPEC simple_expr ;
This is equivalent to
SPEC AG simple_expr ;

but is checked by a specialised algorithm during reachsiaifialysis.

133

LTL Specification

Itl_specification ::

LTLSPEC Itl_expr [0]

Itl_expr ::
simple_expr -- a simple boolean expression
| (Itl_expr)
| ! Itl_expr -- logical not
| Itl_expr & Itl_expr -- logical and
| Itl_expr | Itl_expr -- logical or
| Itl_expr xor Itl_expr -- logical exclusive or
| Itl_expr xnor Itl_expr -- logical NOT exclusive or
| Itl_expr -> Itl_expr -- logical implies
| Itl_expr <-> |tl_expr -- logical equivalence
-- FUTURE
| X Itl_expr -- next state
| G Itl_expr -- globally
| F Itl_expr -- finally
| Itl_expr U Itl_expr --until
| Itl_expr V Itl_expr -- releases
-- PAST
| Y Itl_expr -- previous state
| Z Itl_expr -- not previous state not
| H Itl_expr -- historically
| O Itl_expr -- once
| Itl_expr S Itl_expr -- since
| Itl_expr T Itl_expr -- triggered
Real Time CTL Specification
rtctl_specification :: SPEC rtctl_expr [0]
rtctl_expr ::
ctl_expr
| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [rtctl_expr BU range rtctl_expr]
| E [rtctl_expr BU range rtctl_expr]
range : integer_number integer_number

Itis also possible to compute quantative information fer BHSM:

compute_specification :: COWPUTE compute_expr [;]

compute_expr :: M N [

| MAX [

rtctl_expr ,
rtctl_expr ,

rtctl_expr]
rtctl_expr]
PSL Specification

psispec_declaration :: "PSLSPEC " psl_expr ;"

psl_expr ::

psl_primary_expr
| psl_unary_expr

134

| psl_binary_expr

| psl_conditional_expr
| psl_case_expr

| psl_property

psl_primary_expr ::

number ;; & numeric constant
| boolean ;7 a boolean constant
| var_id ;. a variable identifier
| { psl_expr , .. , pslexpr }
| { psl_expr " {" psl_expr , e, "psl_expr" 1}
| (psl_expr)
psl_unary_expr ::

+ psl_primary_expr
| - psl_primary_expr
| ! psl_primary_expr
psl_binary_expr ::

psl_expr + psl_expr
| psl_expr uni on psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr | psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr 1= psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr
psl_conditional_expr ::
psl_expr ? psl_expr psl_expr
psl_case_expr :
case

psl_expr psl_expr
psl_expr psl_expr

endcase

Among the subclasses pBl _expr we depict the claspsl _bexpr that will be used in the
following to identify purely boolean, i.e. not temporal pegssions.

psl_property ::

replicator psl_expr

| FL_property
| psl_expr
| psl_expr
| FL_property

;; a replicated property
abort psl_bexpr

<-> psl_expr

-> psl_expr

| OBE_property

replicator ::
forall
index_range ::

var_id [index_range]

i n value_set

135

[range]
range :
low_bound : high_bound
low_bound ::
number
| identifier
high_bound ::
number
| identifier
| inf ;; inifite high bound
value_set ::
{ value_range , .. , value_range }
| bool ean
value_range ::
psl_expr
| range

FL_property ::

;7 PRIMITIVE LTL OPERATORS

X FL_property

X! FL_property

F FL_property

G FL_property

[FL_property U FL_property]
[FL_property W FL_property]
SIMPLE TEMPORAL OPERATORS
al ways FL_property

never FL_property

next FL_property

next! FL_property

eventual | y! FL_property

FL_property until! FL_property
FL_property unti | FL_property
FL_property until!_ FL_property
FL_property until _ FL_property

I
I
I
I
I
I
I
I
I
I
I
I
I
I
| FL_property bef ore! FL_property
| FL_property bef ore FL_property

| FL_property bef ore! _ FL_property
| FL_property bef ore_ FL_property
;; EXTENDED NEXT OPERATORS

| X [number] (FL_property)

| XU [number] (FL_property)

| next [number] (FL_property)

| next! [number] (FL_property)
next _a [range] (FL_property)
next _a! [range] (FL_property)
next _e [range] (FL_property)
next _e! [range] (FL_property)

next _event! (psl_bexpr) (FL_property)
next _event (psl_bexpr) (FL_property)
next _event! (psl_bexpr) [number 1 (FL_property)
next _event (psl_bexpr) [number] (FL_property)

136

| sequence |-> sequence
| sequence |=> sequence

1
1

I
I
I
I
e

next _event _a! (psl_bexpr) [psl_expr] (FL_property)
next _event _a (psl_bexpr) [psl_expr] (FL_property)
next _event_e! (psl_bexpr) [psl_expr] (FL_property)
next _event_e (psl_bexpr) [psl_expr] (FL_property)

; OPERATORS ON SEREs
| sequence (FL_property)
|
|

—_——
[RE—

al ways sequence

G sequence

never sequence
eventual | y! sequence

wi t hi n! (sequence_or_psl_bexpr , psl_bexpr) sequence
wi thin (sequence_or_psl_bexpr , psl_bexpr) sequence

within!_ (sequence_or_psl_bexpr , psl_bexpr) sequence
wi t hi n_ (sequence_or_psl_bexpr , psl_bexpr) sequence

whil enot! (psl_bexpr) sequence
whi | enot (psl_bexpr) sequence

whil enot! _ (psl_bexpr) sequence
whi | enot _ (psl_bexpr) sequence

sequence_or_psl_bexpr ::

sequence

| psl_bexpr

sequence ::

{ SERE}

SERE :

sequence

| psl_bexpr

COMPOSITION OPERATORS

| SERE ; SERE
| SERE : SERE
| SERE & SERE
| SERE && SERE
| SERE | SERE

RegExp QUALIFIERS

| SERE [* [count]]

[* [count]]

| SERE [+]

[+]

| psl_bexpr [= count]
| psl_bexpr [-> count]
count ::

number

| range

OBE_property ::

AX OBE_property
AG OBE_property
AF OBE_property
A [OBE_property U OBE_property]

137

| EX OBE_property
| EG OBE_property
| EF OBE_property
| E[OBE_property U OBE_property]

138

Command Index

1, seebang 103

, 103
add _property , 66
alias , 104

bmc.inc _simulate , 87

bmc_pick _state , 87

bmc_setup , 74

bmc_simulate _check _feasible
88

bmc_simulate , 87

build _boolean _model , 56

build _flat _model, 56

build _model, 53

check _ctlspec , 60

check _fsm, 59

check _invar _bmc.inc , 85

check _invar _bmc, 84

check _invar _gr, 72

check _invar , 62

check _ltlspec _bmc.inc , 79

check _ltlspec _bmc_onepb, 76

check _ltlspec _bmc, 75

check _ltlspec _sbmc.inc , 81

check _ltlspec _sbmc, 80

check _ltlspec _simpl , 69

check _ltlspec , 64

check _property , 66

check _pslspec , 88

check _spec, 61

clean _bdd _cache , 102

compute _reachable gr,73

compute _reachable ,58

compute , 65

dynamic _var _ordering , 101

echo, 104

encode _variables ,51

execute _partial _traces ,92

execute _traces ,92

flatten _hierarchy , 49

gen_invar _bmc, 85

gen_ltlspec _bmc_onepb, 78

gen_ltlspec _bmc, 77

gen _tlspec _sbmc, 82
get _internal _status ,55
go_bmc, 74

goto _state ,93

go, 54

help , 105

history , 105

hrc _counter _acceleration , 71

pick _state , 89

print _bdd_stats , 103
print _current _state ,94
print _fair _states ,60
print _fair _transitions , 60
print _formula , 102
print _fsm _stats , 59
print _iwls950ptions , 54
print _reachable _states ,59
print _usage, 106
process _model, 55

quit , 106

read _model , 49

read _trace , 96

reset , 106

set _bdd_parameters , 103
set , 106
show_dependencies , 50
show_plugins , 95
show_property , 67
show_traces , 95
show_vars , 50

simulate , 90

source , 107

time , 108

unalias , 109

unset , 110

usage, 110

which , 110

write _boolean _model, 57
write _coi _model , 68
write _flat _model , 56
write _order ,51

write _pred _clusters _model , 57

write _reduced _model, 69

write _simplified _model , 69

140

Variable Index

NUSMVLIBRARY_PATH 111, 114 nusmv_stdin , 111
affinity , 54 nusmv_stdout , 111
ag-only _search ,61 on_failure _script _quits , 110
autoexec , 110 open _path , 111
backward _compatibility , 50 oreg justice _emptiness _bdd_.algorithm
bdd _static _order _heuristics ,53 61
bmc_dimacs _filename , 83 output _boolean _model file ,57
bmc_force _pltl _tableau , 83 output _flatten _model file 56
bmc.inc _invar _alg , 86 output _order _file ,52
bmc.invar _alg , 86 output _word _format , 58
bmc.invar _dimacs _flename , 86 partition _method , 53
bmc_length , 83 pp_list ,49
bmc_loopback , 83 rbc _inlining ,74
bmc_optimized _tableau , 83 rbc _rbc2enf _algorithm 75
bmc_sbmc_gf _fg _opt , 84 reorder _method , 99
check _fsm, 59 sat _solver , 87
check _invar _bdd_bmc_heuristic , sexp -inlining , 74
64 shell _char , 111
check _invar _bdd_bmc_threshold show_defines _in _traces ,95
64 shown _states , 91
check _invar _forward _backward _heuristic traces _hiding _prefix ,91,94
64 traces _regexp ,91,94
check _invar _strategy ,64 traces _show_defines _with _next ,
cone _of _influence ,68 95
conj _part _threshold ,54 trans _order _file ,54
counter _examples , 94 type _checking _warning _on, 50
daggifier _counter _threshold ,56 use _coi _size _sorting , 68
daggifier _depth _threshold , 56 vars _order _type ,52
daggifier _statistics , 56 verbose _level ,49
default _trace _plugin ,95 write _order _dumps_bits , 51

dynamic _reorder ,99
enable _bdd_cache , 103
filec ,111

forward _search , 61
history _char , 111
image \W1,2,34 },54
image _cluster _size ,54
image _verbosity , 54
input _file ,49

input _order file ,51
iwls95preorder , 54

Iltl _tableau _forward _search ,61
nusmv_stderr ,111

141

Index

Symbol
.nusmvrc,
-AG, 115
-bdd _soh

S
114

, 116

-bmc _length k, 116
-bmc, 116

-coi ,115

-cpp , 114

-cp cpt, 116

-ctt , 115

-dex , 114

-disable
-dynamic

_bdd _cache , 116
,116

-flt 115

-f , 115

-help , 113

-h, 113
-ic ,114
-i , 115

-ils , 114,115

-is , 114

-iwls95preorder , 116

-iwls95

cpt, 116

-i v file, 115

p 114

-mono, 116
-m method 116

-noaffinity

,116

-n idx, 114

-obm bmfile, 114
-ofm fmfile, 114
-ojeba algorithm, 117

-old _div

_op, 114

-old , 114

-0 ov_file,

-pre pps
-reorder

115
114
,116

-rin on,off 116

-r , 115

-sat _solver name 116
-sin on,off 116

-source
-thresh

cmd-file 48
cpt, 116

142

-t tv file, 115

-v verbose-levelll3
ASSIGNconstraint, 28
FAIRNESSconstraints, 30
FROZENVAHReclaration, 25
IVAR declaration, 24, 26
VARdeclaration, 24, 26
running , 34

temp.ord , 52
+,-%/,15

2,17

<<, >> 16

><>=<=15

[:],27

[1,17

nod, 16

J.nusmvre, 114

A
administration commands, 103
AND

logical and bitwise, 14
array define declarations, 26
array type, 8
Array Variables, 46

B

basic next expression, 20
Basic Trace Explainer, 97
batch, running NSMV, 113
bit selection operator, 17
boolean type, 7

bool operator, 21

C

case expressions, 19

Commands for Bounded Model Checking,
73

Commands for checking PSL specifica-
tions, 88

Commands for Guided Reachability, 72

Commands for HRC, 71

Commands for Model Simplification, 68

comments in NSMV language, 6

compassion constraints, 30
concatenation operator, 17
constant expressions, 10
CONSTANTS declarations, 27
context, 35

CTL specifications, 36

D

DD package interface, 99
declarations, 34

DEFINE : array, 26
DEFINE declarations, 26
defines, 13

definition of the FSM, 22
Displaying Traces, 94

E
enumeration types, 7
Execution Commands, 91
expressions, 9
basic expressions, 12
basic next, 20
case, 19
constants, 10
next, 21
sets, 18
simple, 21
extend operator, 18

F

fair execution paths, 30
fairness constraints, 30
fair paths, 30

frozen variables syntax, 25

|
identifiers, 32
if-then-else expressions, 20
IFF
logical and bitwise, 14
implicit type conversion, 10
IMPLIES
logical and bitwise, 14
Important Difference Between BDD and
SAT Based LTL Model Check-
ing, 39
inclusion operator, 19
index subscript operator, 17
infinity, 40
INIT constraint, 27
Input File Syntax, 45
input variables syntax, 24, 26
Inspecting Traces, 93
integer type, 7
interactive, running NSMV, 48

143

interactive shell, 48

interface to DD Package, 99
INVAR constraint, 28

Invariant Specifications, 37
INVARSPEC Specifications, 37
ISA declarations, 36

J

justice constraints, 30

K
keywords, 6

L
LTL Specifications, 38

M

main module, 34
master.nusmvrc, 114
model compiling, 49

model parsing, 49

model reading, 49
MODULE declarations, 30
MODULE instantiations, 31

N
namespaces, 34
next expressions, 21
NOT
logical and bitwise, 14

O

operator
mod, 16

operators
AND, 14
arithmetic, 15
bit selection, 17
cast, 21
count, 20
equality, 14
IFF, 14
IMPLIES, 14
inclusion, 19
index subscript, 17
inequality, 14
NOT, 14
OR, 14
precedence, 13
relational, 15
shift, 16
union, 18
word concatenation, 17
XNOR, 14
XOR, 14

options, 113
OR
logical and bitwise, 14

P

parentheses, 14
process, 33
processes, 33
process keyword, 33
PSL Specifications, 40

R

Real Time CTL Specifications and Compu-
tations, 39

resize operator, 18

S
Scalar Variables, 45
self, 33
set expressions, 18
set types, 8
Shell configuration Variables, 110
Shift Operator, 16
signed operator, 22
simple expressions, 21
Simulation Commands, 89
States/Variables Table, 98
state variables, 24
state variables syntax, 26
swconst operator, 21
syntax rules
complex identifiers, 32
identifiers, 6
main program, 34
module declarations, 30
symbolic constants, 7
type specifiers, 22

T
toint operator, 21
Trace Plugin Commands, 95
Trace Plugins, 97
Traces, 93
TRANS constraint, 28
Type conversion operators, 21
type order, 9
types, 7
array, 8
boolean, 7
enumerations, 7
implicit conversion, 10
integer, 7
ordering, 9
set, 8
word, 8

144

type specifiers, 22
U

unsigned operator, 22
uwconst operator, 21

V
variable declarations, 22
variables, 13

w

word1 operator, 22
word type, 8

X
XML Format Printer, 98
XML Format Reader, 99
XNOR

logical and bitwise, 14
XOR

logical and bitwise, 14

