Scilab Function
Last update : April 1993, revised 2005

histplot - plot a histogram

Calling Sequence

histplot(n, data, <opt_args>)
histplot(x, data, <opt_args>)

Parameters

Description

This function plot an histogram of the data vector using the classes x . When the number n of classes is provided instead of x , the classes are choosen equally spaced and x(1) = min(data) < x(2) = x(1) + dx < ... < x(n+1) = max(data) with dx = (x(n+1)-x(1))/n.

The classes are defined by C1 = [x(1), x(2)] and Ci = ( x(i), x(i+1)] for i >= 2. Noting Nmax the total number of data (Nmax = length(data)) and Ni the number of data components falling in Ci, the value of the histogram for x in Ci is equal to Ni/(Nmax (x(i+1)-x(i))) when normalization is true (default case) and else, simply equal to Ni. When normalization occurs the histogram verifies:

            x(n+1)
           /  
           |   h(x) dx = 1,  when x(1)<=min(data) and max(data) <= x(n+1)) 
           /
           x(1)
     
    

Any plot2d (optional) parameter may be provided; for instance to plot an histogram with the color number 2 (blue if std colormap is used) and to restrict the plot inside the rectangle [-3,3]x[0,0.5], you may use histplot(n,data, style=2, rect=[-3,0,3,0.5]).

Enter the command histplot() to see a demo.

Examples

// example #1: variations around an histogram of a gaussian random sample 
d=rand(1,10000,'normal');  // the gaussian random sample
clf();histplot(20,d)
clf();histplot(20,d,normalization=%f)
clf();histplot(20,d,leg='rand(1,10000,''normal'')',style=5)
clf();histplot(20,d,leg='rand(1,10000,''normal'')',style=16, rect=[-3,0,3,0.5]); 

// example #2: histogram of a binomial (B(6,0.5)) random sample
d = grand(1000,1,"bin", 6, 0.5);
c = linspace(-0.5,6.5,8);
xbasc()
subplot(2,1,1)
   histplot(c, d, style=2)
   xtitle("normalized histogram")
subplot(2,1,2)
   histplot(c, d, normalization=%f, style=5)
   xtitle("non normalized histogram")

// example #3: histogram of an exponential random sample 
lambda = 2;
X = grand(100000,1,"exp", 1/lambda);
Xmax = max(X);
xbasc()
histplot(40, X, style=2)
x = linspace(0,max(Xmax),100)';
plot2d(x,lambda*exp(-lambda*x),strf="000",style=5)
legend(["exponential random sample histogram" "exact density curve"]);
// Note: if you use the old graphic mode use instead 
// legends(["exponential random sample histogram" "exact density curve"],[2 5],"ur");
  

See Also

hist3d ,   plot2d ,   dsearch ,