[ VIGRA Homepage | Class Index | Function Index | File Index | Main Page ]
![]() |
Mathematical Functions | ![]() |
---|
Namespaces | |
namespace | vigra::detail |
Classes | |
class | BSpline |
class | BSplineBase |
class | CatmullRomSpline |
class | CoscotFunction |
class | Gaussian |
Functions | |
template<class T> double | erf (T x) |
float | round (float t) |
template<class T> NumericTraits< T >::Promote | sq (T t) |
template<class T> T | sign (T t) |
template<class T1, class T2> T1 | sign (T1 t1, T2 t2) |
NormTraits< T >::SquaredNormType | squaredNorm (T const &t) |
template<class T> NormTraits< T >::NormType | norm (T const &t) |
template<class T1, class T2> bool | closeAtTolerance (T1 l, T2 r, typename PromoteTraits< T1, T2 >::Promote epsilon) |
template<typename IntType> IntType | gcd (IntType n, IntType m) |
template<typename IntType> IntType | lcm (IntType n, IntType m) |
result_type | operator() (argument_type x) const |
Detailed Description |
|
Value: inline NormTraits<T>::SquaredNormType squaredNorm(T t) { return sq(t); } \ inline NormTraits<T>::NormType norm(T t) { return abs(t); } |
|
Tolerance based floating-point comparison. Check whether two floating point numbers are equal within the given tolerance. This is useful because floating point numbers that should be equal in theory are rarely exactly equal in practice. If the tolerance epsilon is not given, twice the machine epsilon is used.
#include "vigra/mathutil.hxx" |
|
The error function.
If
![]()
according to the formula given in Press et al. "Numerical Recipes".
#include "vigra/mathutil.hxx" |
|
Calculate the greatest common divisor. This function works for arbitrary integer types, including user-defined (e.g. infinite precision) ones.
#include "vigra/rational.hxx" |
|
Calculate the lowest common multiple. This function works for arbitrary integer types, including user-defined (e.g. infinite precision) ones.
#include "vigra/rational.hxx" |
|
The norm of a numerical object.
For scalar types: implemented as
#include "vigra/mathutil.hxx" |
|
function (functor) call |
|
The rounding function. Defined for all floating point types. Rounds towards the nearest integer for both positive and negative inputs.
#include "vigra/mathutil.hxx" |
|
The binary sign function. Transfers the sign of t2 to t1.
#include "vigra/mathutil.hxx" |
|
The sign function. Returns 1, 0, or -1 depending on the sign of t.
#include "vigra/mathutil.hxx" |
|
The square function. sq(x) is needed so often that it makes sense to define it as a function.
#include "vigra/mathutil.hxx" |
|
The squared norm of a numerical object.
For scalar types: equals |
© Ullrich Köthe (koethe@informatik.uni-hamburg.de) |
html generated using doxygen and Python
|